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Abstract—Though high fidelity simulators for drones and other
aerial vehicles look exceptionally realistic, using simulators to
train control policies and then transferring them to the real world
does not work well. One reason is that real images, especially
on low-power drones, produce output that look different from
simulated images, ignoring for the moment that simulated worlds
themselves look rather different from real ones at the level that
matters for machine learning. To overcome this limitation, we
focus on using object detectors that tend to transfer well from
simulation to the real world, and extract features of detected
objects to serve as input to reinforcement learning algorithms.
Empirical results with a low-power drone show promising results.
A recorded video which compares a vision-based approach with
the proposed approach can be found here: Video

Index Terms—Reinforcement learning, Real-world implemen-
tation, Object Detection, Drone Navigation.

I. INTRODUCTION AND RELATED WORK

Autonomous drone navigation is one of the emerging tech-
nologies that enable many capabilities such as search and
rescue [1]. Moreover, indoor drones used for finding specific
objects can take too long if it is done manually. Machine
Learning(ML) algorithms, specifically Reinforcement Learn-
ing (RL) can be used to train an agent for goal-oriented
navigation tasks. The trained model with RL can work on low-
power devices such as tiny Unmanned Aerial Vehicles (UAVs)
for search and rescue [2]. To achieve this goal, the RL agent
needs to learn to navigate towards some predefined objects.
In this paper, we propose a framework to solve the challenge
of transferring the learned model from simulation to the real-
world in a goal oriented environment.

There are some related works which reduce the gap between
simulation and real-world implementation for drone navigation
and obstacle detection. [5] is a survey on object detection
using ML algorithms. Kang et al [2] has combined real and
simulation images to help transferring sim-to-real. [6] have
proposed CAD2RL for indoor flight collision avoidance. The
main contribution of our work is a framework for drone
navigation and obstacle avoidance using image processing
and RL by (1)designing same real world and simulation
environments, (2)combining simulation and real world data
and (3)image processing. To the best of our knowledge there
is no related work of sim-to-real which defines a mission like
”reach the sphere” with collision avoidance for indoor drones.
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Fig. 1. Proposed end-to-end framework for real-world implementation of deep
reinforcement learning including four steps: 1- Simulate an environment in
Airsim [3] similar to a real environment and collect a combination dataset
of real and simulated environment by using RL agent which is a drone.
2- Design a custom model by inspiring YOLO [4] to detect sphere in the
environment. 3- Using generated data in two last steps to train the agent in
simulated environment with DRL to fulfill a mission like going toward sphere.
4- Transferring simulation to real-world implementation.

II. PROPOSED METHOD

Figure 1 shows an overview of the proposed framework
which includes four steps: collecting data, image preprocess-
ing, reinforcement learning and real-world implementation.

Design Environment and Collect Data. In the first step,
we design the simulation environment to mirror the real-
world. Figure 2 shows two simple and complex environments
which are designed for training and testing the agent. Each
environment has an object as a goal (red sphere). We increase
the complexity of the environment by adding some obstacles
similar to the goal. The combined dataset which included
3000 simulation and 1500 real images are used for training
the model. This dataset is annotated manually and labelled
by creating bounding boxes around each class object and
considered them as the ground truth.

YOLOv5 and RL Integration. In the second step, instead
of giving captured images directly to the RL model, collected
images are given to a customized YOLOv5 [4] model to do
image processing. Finally, we use a vector of eight values

https://youtu.be/8WjuxUaPJow
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Fig. 2. Two different environments, simple and complex, are used to train
and test the RL agent. (a) and (c) show simulated environments in Airsim
which are similar to real-world environments (b) and (d).

as the observation space to the RL algorithm. The first four
values are the bounding box coordinates of the detected sphere
and the last four values are the multi-ranger values used for
obstacle avoidance.

RL Reward Policy. We developed an end-to-end navigation
system based on DQN [7]. This model directly transfers the
sensor readings and sphere dimensions to the commands of
multi-rotor movements. In order to use RL for training a
model, we define the reward as follows:

rt =


rgoal dt ≤ dp

rcol do ≤ dq

1− dt

(1)

where rgoal is the positive reward on reaching the target
position, rcol is negative reward when the multi-rotor collides
with obstacles in the environment and 1−dt in other situations.
dt is the distance between the goal and the drone at time t,
and do is the distance from the obstacle calculated using lidar
readings. dp and dq are predefined distances used to check if
the target is reached or a collision occurs.

Simulation to Real-World. The difference between simula-
tion and the real world means that the trained models based on
simulation images are not applicable for real world scenarios.
To account for this difference, there are several approaches
like Domain Adaptation [8], Domain Randomization [9], Fine
Tuning [10]. Although this generalization ability is critical
for RL models, zero-shot policy transfer is still a challenging
problem [11] For simpler tasks like object detection and navi-
gation, using an object detection algorithm like YOLO seems
more appropriate as the visual differences can be addressed
early. For the object detection, we used the same approach as
simulation in the real world by passing the images captured
from the drone to the YOLO model to get the bounding box
coordinates. We ensure the values in sim and real world are
consistent with one another for easy transfer from sim to real.
Once we have a well performing model in simulation we
transfer that on to a drone with AI capabilities [12].

III. EXPERIMENTAL RESULT

To evaluate the proposed approach, we used CrazyFlie,
an open-source flying development instrument with an AI-
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Fig. 3. Hardware setup for real-world implementation.
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Fig. 4. Preprocessing on drone view provides sphere detection in simulation
and real world environments.

Deck extension board [13] which is shown in Figure 3. The
defined mission for the CrazyFlie is reaching the sphere in the
environment without collision. Figure 4 shows the result of
testing the customized YOLO model in simulated and paired
real world. Once we got satisfactory results with YOLOv5
training, we integrated YOLO model with our RL algorithm.
We could achieve up to 92% accuracy with no penalty in
simulated environment. In the simulation a vision-based
approach reached 90% average success rate after 100k steps
while we achieve same success rate in 400 steps. Therefore
we reduced training time significantly. In real world testing,
we observed similar results when the drone is sufficiently
close to the object of interest when it can clearly see the
sphere, otherwise it spends reasonable time in searching for
the object which poses a problem as the CrazyFlie comes
with limited power. These results are improved upon the
vision-based navigation where the agent takes more time and
reaches the goal in less than 20% of the cases. The real-world
experiment video can be found here.

CONCLUSION

For end-to-end navigation tasks, the autonomous agent
needs to handle a wide variety of challenges. Learning in
the real world is difficult on account of unusual situations.

Training in simulation is one solution to high costs in
real-word testing. However, the ability to transfer learned
information in the simulation to real does not translate to
safe navigation in the real world. Further advancements in
making simulation environment realistic is needed. Even then
there are certain aspects that are left unaccounted for. To
alleviate this, we implement a different approach where object
detection features are combined with reinforcement learning
for easier sim to real transfer. The main idea is to use object
detection features instead of raw video. As evidenced in the
results above, proposed approach outperforms vision-based
navigation by a lot owing to the well performing underlying
model.
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