
A Recurrent Differentiable Physics Engine for Tensegrity Robots

Kun Wang, Mridul Aanjaneya and Kostas Bekris

Abstract— Tensegrity robots, composed of rigid rods and
flexible cables, are difficult to accurately model and control
given the presence of complex dynamics and high number of
DoFs. Differentiable physics engines have been recently pro-
posed as a data-driven approach for model identification of such
complex robotic systems. These engines are often executed at
a high-frequency to achieve accurate simulation. Ground truth
trajectories for training differentiable engines, however, are not
typically available at such high frequencies due to limitations of
real-world sensors. The present work focuses on this frequency
mismatch, which impacts the modeling accuracy. We proposed
a recurrent structure for a differentiable physics engine of
tensegrity robots, which can be trained effectively even with
low-frequency trajectories. To train this new recurrent engine
in a robust way, this work introduces relative to prior work:
(i) a new implicit integration scheme, (ii) a progressive training
pipeline, and (iii) a differentiable collision checker. A model
of NASA’s icosahedron SUPERballBot on MuJoCo is used as
the ground truth system to collect training data. Simulated
experiments show that once the recurrent differentiable engine
has been trained given the low-frequency trajectories from
MuJoCo, it is able to match the behavior of MuJoCo’s system.
The criterion for success is whether a locomotion strategy
learned using the differentiable engine can be transferred back
to the ground-truth system and result in a similar motion.
Notably, the amount of ground truth data needed to train the
differentiable engine, such that the policy is transferable to the
ground truth system, is 1% of the data needed to train the
policy directly on the ground-truth system.

I. INTRODUCTION

Prior work on tensegrity locomotion [1], [2], [3], [4], [5]
has achieved complex behaviors, on uneven terrain, using the
NTRT simulator [6], which was manually tuned to match a
real platform [7], [8]. Recently, the authors have developed
the first data driven differentiable engine for model identi-
fication of tensegrity robots [9], [10]. Nevertheless, critical
gaps remain for the effective deployment of such tools on real
robots. In particular, the observation sampling frequency on
real robot is much lower than the simulation step frequency
of a physics engine. This frequency discrepancy raises the
challenge that the dynamics model needs to predict the
missing data points of a discretely sampled sparse trajectory.
In addition, the missing data points may include events that
are critical to the motion, such as collisions (see Fig. 1(top)).
A previous differential engine for tensegrities [10] used
a feed-forward architecture and can only be trained from
trajectories sampled at high frequencies, similar to that of

The authors are with the Department of Computer Science,
Rutgers University, NJ 08901, USA. Email: kun.wang2012,
mridul.aanjaneya, kostas.bekris@rutgers.edu.
This work has been partially supported by NSF award IIS 1956027,
IIS-2132972, CCF-2110861 and the Rutgers University startup grant.

Sample Xt Sample Xt+T

Missing Data points

Fig. 1: (top) A sparsely sampled trajectory, given observation frequency
T , may skip critical states with contacts. (bottom-left) A non-contact setup
used first in a progressive training process: the green rod of the tensegrity
is kept fixed, while random forces are applied to the other rods. (bottom-
right) A MuJoCo terrain environment where the robot is rolling. Training
data comes from MuJoCo, which is also used for visualization.

the engine’s frequency, i.e., in the order of 1000Hz, which
is beyond what most sensors can achieve.

Motivated by this frequency gap, this work proposes (i)
a recurrent architecture for a differentiable physics engine
targeted for tensegrity robots, which remains explainable
and can be trained effectively even with low-frequency
ground-truth data; (ii) an implicit integration scheme; (iii)
a progressive training algorithm, which avoids gradient ex-
plosion and leads to a fast and stable training process; (iv)
a fast differentiable collision checker to further accelerate
the training process. These components enable stable and
robust recurrent training with low-frequency training data
on a high-frequency physics engine. The long version is
published recently [11].

II. PROPOSED ENGINE
A. Recurrent Differentiable Physics Engine

At a high level, the proposed training pipeline calls the
differentiable physics engine in a recurrent fashion through
a sequence of temporal connections. With help from Back-
Propagation Through Time (BPTT), the engine parameters
can be identified given low-frequency sampled trajectories.
Figure 2 presents the recurrent nature of the proposed archi-
tecture.

To adapt this engine for recurrent training and achieve ro-
bustness, this work introduces an implicit integration scheme
and a differentiable collision checker.

B. Implicit Integration
While implicit integration schemes are standard for simu-

lating stiff multi-body systems, their dynamics are typically



Xt

Ut

DPE X̂t+1

Ut+1

DPE X̂t+T

Xt+T

Loss

Fig. 2: The recurrent training pipeline is trained via supervision given a state-
action tuple Xt ,Ūt ,Xt+T . The engine will generate all missing states between
Xt and Xt+T . The mean square error (MSE) loss between the predicted state
X̂t+T and the ground truth Xt+T generates the gradients needed to update
the engine’s internal parameters. DPE: Differentiable Physics Engine.

handled by explicit methods, such as semi-explicit integra-
tion [12]. Semi-explicit integration is not stable for stiff
systems, such as tensegrities. Deriving an implicit system,
however, for the whole tensegrity is very complex. For
instance, more complex than what has been achieved using a
particle-based mesh system [13]. To address this complexity,
this work follows a modular approach by focusing on the
basic elements of tensegrity robots, rods and springs, and
derives an Ax = b form linear system for each time step,
where A is a 21x21 matrix and x,b are 21x1 vectors (see
appendix1 for details).

C. Progressive Training via Implicit/Semi-implicit Integr.
The objective of progressive training is to mitigate the

frequency discrepancy between the training data and the
physics engine. We train the engine using implicit integration
first in a time-stepping way to find a coarse-grain model first,
and then fine tune with semi-implicit integration for a more
accurate model. The implicit integration has a large region
of absolute stability in terms of parameters and time step but
it is computationally expensive and reduces system energy
steadily over time. Fine tuning with semi-implicit integration
is fast and more accurate, while it maintains system energy.
The proposed progressive training approach takes advantage
of both schemes’ benefits.

D. Differentiable Collision Checker
The motion of the robot also depends upon the reaction

forces and the friction between the robot and the ground.
Thus, rich contacts should be modeled properly to simulate
robot motions. In principle, the physics engine could use an
off-the-shelf collision checker. The requirement for training
the engine in a recurrent fashion and backpropagating the
loss through the engine means that the collision checker
should also be differentiable.

III. EXPERIMENTS

The SUPERballBot tensegrity robot platform [14] is sim-
ulated in the MuJoCo engine as the ground truth system.
The task is to estimate the robot’s parameters, i.e., spring
stiffness, damping, rod mass, and contact parameters, i.e.,
reaction and friction coefficients. The evaluation compares
the differences of robot’s center of the mass (CoM) between
our engine and MuJoCo for the same controls.

The ground truth system on MuJoCo has been setup
to mimic empirical motions of the real system at NASA
Ames [14] and reflect the NTRT tensegrity robot simula-
tor [6]. A non-contact and a contact environment were setup

1https://sites.google.com/view/recurrentengine

0 20 40
Number of Timesteps

0

5

C
oM

E
rr

or
(m

)

×10−5

Sparse Dense

0 20 40
Number of Timesteps

0.00

0.25

0.50

0.75

1.00

C
oM

E
rr

or
(m

)

Sparse Dense

Fig. 3: (left) The proposed engine achieves smaller CoM position error in
non-contact environments when trained on sparse trajectories, which contain
only 1% of data points of dense trajectories, relative to previous work [10]
trained on dense trajectories. (right) Even when using only 1% of data
points, the proposed engine achieves comparable error regarding the CoM
position in the contact environment.

as shown in Fig. 1. For each environment, 10 trajectories
were samppled from MuJoCo for training, 2 for validation
and 10 for testing. All trajectories are 5 seconds long. The
sampling frequency is 10Hz, however, the engine’s frequency
is 1000Hz.

A. System Identification with Sparse Simulation Trajectories
We compared the proposed training using sparsely sam-

pled trajectories against the alternative [10] which is trained
with dense trajectories. Dense trajectories’ sampling fre-
quency is 1000Hz and the sparse ones’ are 10Hz. Although
the sparse dataset only contains 1% of the dense dataset,
the proposed solution achieves better CoM error both for
non-contact trajectories and contact trajectories as shown
in Fig. 3. The recurrent training process can average out
the noise over smaller simulation steps, resulting to a more
robust and accurate model. The CoM error arises from
the simplification of the contact model. This simplification
reduces the need for training data, but also impacts identifica-
tion accuracy, which is a trade-off between data requirements
and model complexity.

B. System Identification with Sparse Real World Trajectories

Fig. 4: A 3-bar tensegrity robot is used for sampling real world trajectories
(left). We estimate the robot pose and then identify its parameters (right).

We are working on an identification task for a real, 3-bar
tensegrity platform [15]2. Due to the sensors’ limitations, the
sampling rate varies from 100Hz to less than 1Hz. We only
have partially observed robot states since the end caps are
usually occluded. The observations like linear and angular
velocities are no longer available too. The observed values,
e.g. cable lengths and end cap point cloud, are also noisy.
All of these points emphasize the necessity for a recurrent
differentiable physics engine and highlight the challenges of
sim2real transfer tasks in this domain.

2Robot setup built by collaborators: Will Johnson, Xiaonan Huang, Joran
Booth, Rebecca Kramer-Bottiglio at the Mech. Eng. dept. at Yale University.

https://sites.google.com/view/recurrentengine


REFERENCES

[1] M. Zhang, X. Geng, J. Bruce, K. Caluwaerts, M. Vespignani, V. Sun-
Spiral, P. Abbeel, and S. Levine, “Deep reinforcement learning for
tensegrity robot locomotion,” in 2017 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2017, pp. 634–641.

[2] J. Luo, R. Edmunds, F. Rice, and A. M. Agogino, “Tensegrity
robot locomotion under limited sensory inputs via deep reinforcement
learning,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2018, pp. 6260–6267.

[3] D. Surovik, K. Wang, M. Vespignani, J. Bruce, and K. E. Bekris,
“Adaptive Tensegrity Locomotion: Controlling a Compliant Icosahe-
dron with Symmetry-Reduced Reinforcement Learning,” International
Journal of Robotics Research (IJRR), 2019.

[4] D. Surovik, J. Bruce, K. Wang, M. Vespignani, and K. Bekris, “Any-
axis tensegrity rolling via symmetry-reduced reinforcement learning,”
in International Symposium on Experimental Robotics. Springer,
2018, pp. 411–421.

[5] D. S. Shah, J. W. Booth, R. L. Baines, K. Wang, M. Vespig-
nani, K. Bekris, and R. Kramer-Bottiglio, “Tensegrity robotics,” Soft
robotics, 2021.

[6] NASA, “NASA Tensegrity Robotics Toolkit,” Accessed 2020, https:
//github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim.

[7] B. T. Mirletz, I.-W. Park, R. D. Quinn, and V. SunSpiral, “Towards
bridging the reality gap between tensegrity simulation and robotic
hardware,” in 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2015, pp. 5357–5363.

[8] K. Caluwaerts, J. Despraz, A. Işçen, A. P. Sabelhaus, J. Bruce,
B. Schrauwen, and V. SunSpiral, “Design and control of compliant
tensegrity robots through simulation and hardware validation,” Journal
of the royal society interface, vol. 11, no. 98, p. 20140520, 2014.

[9] K. Wang, M. Aanjaneya, and K. Bekris, “A first principles approach
for data-efficient system identification of spring-rod systems via
differentiable physics engines,” in Proceedings of the 2nd Conference
on Learning for Dynamics and Control, ser. Proceedings of
Machine Learning Research, A. M. Bayen, A. Jadbabaie, G. Pappas,
P. A. Parrilo, B. Recht, C. Tomlin, and M. Zeilinger, Eds., vol.
120. PMLR, 10–11 Jun 2020, pp. 651–665. [Online]. Available:
https://proceedings.mlr.press/v120/wang20b.html

[10] ——, “Sim2sim evaluation of a novel data-efficient differentiable
physics engine for tensegrity robots,” in 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2021,
pp. 1694–1701.

[11] ——, “A recurrent differentiable engine for modeling tensegrity robots
trainable with low-frequency data,” in 2022 IEEE International Con-
ference on Robotics and Automation (ICRA), 2022.

[12] M. Geilinger, D. Hahn, J. Zehnder, M. Bächer, B. Thomaszewski,
and S. Coros, “Add: analytically differentiable dynamics for multi-
body systems with frictional contact,” ACM Transactions on Graphics
(TOG), vol. 39, no. 6, pp. 1–15, 2020.

[13] Y.-L. Qiao, J. Liang, V. Koltun, and M. C. Lin, “Scalable differentiable
physics for learning and control,” arXiv preprint arXiv:2007.02168,
2020.

[14] M. Vespignani, J. M. Friesen, V. SunSpiral, and J. Bruce, “Design of
superball v2, a compliant tensegrity robot for absorbing large impacts,”
2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 2865–2871, 2018.

[15] C. Paul, F. J. Valero-Cuevas, and H. Lipson, “Design and control
of tensegrity robots for locomotion,” IEEE Transactions on Robotics,
vol. 22, no. 5, pp. 944–957, 2006.

APPENDIX

Xt
DCC CRG

CFG

DIG

Ut Cable Actuator Topology Graph
Differentiable
Physics Engine

X̂t+1IntegratorRAG

Fig. 5: The physics engine takes the current robot state Xt and control Ut as
inputs and predicts the next state X̂t+1. Compared to previous attempts [10],
this work introduces recurrent training (as shown in Fig. 2), a new numerical
integrator, a progressive training pipeline and a new Differentiable Collision
Checker (DCC) to account for the frequency mismatch. DIG: Dynamic
Interaction Graph, CRG: Collision Response Generator, CFG: Cable Force
Generator, RAG: Rod Acceleration Generator.

Physics Engine Components

At the core of the proposed approach lies a differentiable
physics engine, shown in Fig. 5, which builds on top of
previous work [10]. The engine brings together a series of
analytical models based on first principles, which are linear
and differentiable. The input to the engine is the current
robot state Xt and the instantaneous control Ut . The engine
internally stores a representation of the robot in a static
topology graph indicating the connectivity of rods and cables.
The control Ut is passed to a Cable Actuator module, which
maps the control to desired cable rest-lengths. Together with
the topological graph, the cable actuator informs the Cable
Force Generator (CFG), which is responsible to predict the
forces applied on the rods due to the cables given the latest
robot state. In parallel and given the robot state, a Dif-
ferentiable Collision Checker (DCC) detects collisions and
informs a Dynamic Interaction Graph (DIG), which stores
the colliding bodies (either rod-to-rod or rod-to-ground)
and the corresponding contact points. This information is
passed to a Collision Response Generator (CRG), which is
responsible to compute the reaction forces applied to the
rods. The forces and torques from the cables (as computed
by CFG) and those from contacts (as computed by CRG) are
forwarded to the Rod Acceleration Generator (RAG), which
computes the linear and angular acceleration experienced by
the rods. These accelerations and torques are integrated by
an Integrator module so as to update the robot state.

https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim
https://proceedings.mlr.press/v120/wang20b.html

	Introduction
	Proposed Engine
	Recurrent Differentiable Physics Engine
	Implicit Integration
	Progressive Training via Implicit/Semi-implicit Integr.
	Differentiable Collision Checker

	Experiments
	System Identification with Sparse Simulation Trajectories
	System Identification with Sparse Real World Trajectories

	References

