
Modular Latent Space Transfer with
Analytic Manifold Learning

Rika Antonova‡, Maksim Maydanskiy, Danica Kragic‡, Sam Devlin§, Katja Hofmann§
‡EECS, KTH, Stockholm, Sweden

§Microsoft Research

Abstract—Sim2Real can be effective when using photorealistic
simulators with accurate physics. However, the target appearance
might be unknown a-priori and simulated dynamics might
resemble reality only in some aspects. We propose an approach
that uses simulation to help learning latent state representations
without requiring a match in visual appearance or domain
randomization. For this, we learn to encode the dynamics
properties of simulated/source domains in a set of independent
analytic relations that hold on sequences of low-dimensional
simulation states. Then, we impose these relations onto the
latent space when learning on the target domain (e.g. reality).
Defining independence rigorously allows us to obtain modular
representations and ensure that each relation captures a new
aspect of the dynamics. This approach also enables transferring
common properties from a set of related domains, instead of being
confined to modeling a specific task. We show that our approach
improves the quality of the latent space of unsupervised learners
that train from non-stationary high-dimensional observations. We
also outline potential for adaptive partial transfer, which would
entail adapting the strength of imposing relations during transfer.

I. INTRODUCTION

Consider the problem of learning latent state representations
from streaming high-dimensional observations. Unsupervised
learning approaches, such as variational autoencoders [1], have
shown promising results. However, they lack data efficiency
to learn from hardware data in non-stationary settings, e.g.
during reinforcement learning (RL). Previous work proposed
using domain knowledge to structure the latent space during
training. For example, imposing continuity between consecutive
states [2], maximizing mutual information with prior states [3],
enforcing consistency with a forward or inverse model (see [4]
for a survey). This improves data efficiency, but domain
expertise is needed to construct such objectives/relations and
ensure that they hold for target tasks/domains.

We propose1 a more general approach that allows learning
flexible relations from source domains (e.g. simulation). For
this, we formalize the notion of learning a set of independent
relations, without imposing restrictive simplifying assumptions
or requiring domain-specific information. These relations help
structure the latent space learning on target domains where
data efficiency is required (e.g. learning on hardware). Their
modularity/independence yields potential for partial transfer: a
possibility to downweight relations that hold only in simulation
and do not hold on the real underlying dynamics.

1This is a 2-page extended abstract summarizing the parts of our work in [5]
relevant for Sim2Real. A 1-minute video summary of this RSS Sim2Real
workshop abstract is given here: https://youtube.com/watch?v=6J J6kFemLM

Consider an example ‘continuity’ relation [2], [6], which im-
poses an auxiliary loss Lcont(Dx, φ) = E

[
||st+1−st||2

]
, where

st is a low-dimensional or latent state, xt is the corresponding
high-dimensional state (e.g. RGB image), Dx={xt, xt+1, ...}
& encoder φ(x)=s. Such heuristics draw from intuition and
prior knowledge, and it is tedious to manually incorporate a
comprehensive set of these into the overall optimization.

We take a broader perspective. Let g(Dτ ) = 0 define a
relation that holds on a set of sequences Dτ = {τ (i)}Mi=1.
Dτ contains state sequences τ = [st, ..., st+T ] from a set of
source domains. We learn a set of relations g1, ..., gk that
are (approximately) independent, and we define independence
rigorously. Formulating the problem as learning analytic
relations that cut out the latent data manifold allows us to
use neural networks as function approximators, in contrast to
using polynomials to express algebraic relations [7], [8], [9].

II. ANALYTIC MANIFOLD LEARNING (AML): PROPOSED
MATHEMATICAL FORMULATION AND ALGORITHM

Let RN be the ambient space of possible latent state
sequences τ (of some fixed length). LetM be the submanifold
of actual state sequences that our dynamical system could
generate (under any control policy). A submanifold can be
specified by describing all equations (i.e. relations) that have
to hold for points in the submanifold. We aim to find relations
that are in some sense independent. In linear algebra, a
dependency is a linear combination of vectors with constant
coefficients. In our nonlinear setting the analogous notion is
that of syzygy. A collection of functions f‡ = {f1, ..., fk} is
called a syzygy if

∑k
j=0 fjgj is zero. Observe that this sum is a

linear combination of relations g1, ..., gk with coefficients in the
ring of functions. If there is no syzygy f‡ s.t.

∑k
j=0 fjgj=0,

then g1, ..., gk are independent. However, this notion of inde-
pendence deems any g1, g2 dependent: g1 · g2 − g2 · g1 = 0
holds for any g1, g2. Hence, we define restricted syzygies.
Definition II.1 (Restricted Syzygy). Restricted syzygy for
relations g1, ..., gk is a syzygy with the last entry fk equal
to −1, i.e. f = {f1, ..., fk−1, fk=−1} with

∑k
j=1 fjgj=0.

Definition II.2 (Restricted Independence). gk is independent
from g1, ..., gk−1 in a restricted sense if

∑k
j=1 fjgj=0 implies

fk 6= −1, i.e. if there exists no restricted syzygy for g1, ..., gk.
We also give an alternative definition of independence via

transversality, which ensures gks differ to first order and yields
guarantees on the dimensionality of the learned submanifold.

https://youtube.com/watch?v=6J_J6kFemLM


Definition II.3 (Transversality). If for all points τ (i)∈M the
gradients of g1, .., gk at τ , i.e. v = ∇τg|τ(i) , are linearly
independent, we say that gk is transverse to the previous
relations: gk t g1, ..., gk-1.

Using the above definitions, we construct Algorithm 1,
with gks represented by neural networks. The overall idea is:
while learning gks, we are also looking for restricted syzygies
f(τ, g1, ..., gk)=0. Finding them would mean gks are depen-
dent, so we augment the loss for learning gk to push it away
from being dependent. We proceed sequentially: first learning
g1, then g2 while ensuring no restricted syzygies appear for
{g1, g2}, then g3 and so on. For training gks we use on-manifold
data: τ sequences from the simulator. Restricted syzygies f
train on off-manifold data: τoff = {sofft , sofft+1 , ..., soffT } (to
get independence of gks on RN , not restricted to M).

We prove that the process of adding new gks terminates when
using syzygies, and prove guarantees related to transversality:
see [5] for our proofs, further details and illustrations.

Algorithm 1 Analytic Manifold Learning (AML)

1 {τ (i)}di=1 ← rollouts from RL actors
2 train g0 with loss L=gd(τ)− log ‖v‖ (Eq.1)
3 for k = 1, 2, ..., do
4 if aiming for transversality then
5 train gk with loss Ltr from Eq.2

6 else // using syzygies
7 train gk with loss L from Eq.1
8 for j = 1, 2, ..., do
9 generate τoff , τ testoff

10 train fj with Lf = |fj(τoff )|
11 if fj 6=0 on τ testoff then break //gk≈indep.
12 while fj(τ

test
off ) ≈ 0 do

13 freeze fj ; train gk with Lsyz (Eq.3)

L(g) = dg(τ)− log ‖v‖ ; dg(τ) = |g(τ)|/ ‖v‖ (1)

Ltr(gk) = L(gk)− log
∏k−1
j=1 sin

2(angle(vj , vk)) (2)

∇Lsyz(gk; f) = ∇L(gk)−∇gk
[∣∣f(τoff , g1, ..., gk)∣∣] (3)

III. EVALUATING AML POTENTIAL FOR SIM2REAL

To demonstrate potential for Sim2Real, we first learn
relations from simulation states of a source domain with simple
shapes sliding down an incline (Geom-on-incline). Incline angle,
friction and object pose are initialized randomly. Actions are
random forces that push objects along the incline. AML is
given incline, position & velocity at two subsequent steps, and
the applied action. Then, we train an unsupervised learner on
the target domain: YCB-on-incline, which uses 3D scans of
real objects from the YCB dataset [10]. PPO RL [11] drives
the distribution of RGB frames, which is non-stationary, since
they are sampled using the current (changing) RL policy. RL
gets high rewards for pushing objects to stay in the middle
of the incline. Geom-on-incline plays the role of a simulator,
while frames from YCB-on-incline act as surrogates for ‘real’
observations. YCB objects have realistic appearances and their

Fig. 1: YCB-on-incline: mean of 6 training runs, STD as shaded areas.

dynamics is dictated by meshes from scans of real objects. So
there is a non-trivial gap between Geom- vs YCB-on-incline.

As baselines, we use two kinds of unsupervised learners:
VAE [1] – a variational autoencoder, and PRED – a sequential
VAE that, given a sequence of frames x1, ..., xt, constructs
a predictive sequence x1, ..., xt+k. Both use a 4-layer convo-
lutional encoder & de-convolutional decoder; PRED adds a
fully-connected last encoder layer (512 units). We test ability of
AML relations to improve latent space learning as follows: we
impose AML relations by extending the latent part of an ELBO-
based loss of PRED (with zt,t+1 as encoder outputs): L=

−
[
log p(x|zt,t+1)−KL

(
q(zt,t+1)||N(0,1)

)︸ ︷︷ ︸
standard ELBO for PRED version of VAE

]
+
∑K
k=1

∣∣gk(zt,t+1,at)∣∣︸ ︷︷ ︸
impose AML relations

The resulting AMLtrnsv (AMLsyz when using syzygies) gets
a better latent state alignment for object position compared to
VAE and PRED without AML relations imposed (the left plot
in Figure 1). To quantify the alignment, we do a regression fit
using a small fully-connected neural network, which takes la-
tents as inputs and is trained to produce low-dimensional states
as outputs (object positions). The alignment is characterized by
the resulting test error rate and quantifies latent space quality
without needing detailed reconstructions (see [5] for details).
Another important quality measure of a latent space mapping
is how much it distorts the true data manifold. We quantify this
as follows (on 10K test points): take pairs of low-dimensional
representations τ true1 , τ true2 and the corresponding pixel-based
representations x1, x2, then compute distortion coefficient
ρdistort = log

[
dL2
(
φenc(x1), φenc(x2)

)/
dL2
(
τ true1 , τ true2

)]
,

with dL2 as Euclidean distance. An encoder that yields low
variance of these coefficients better preserves the geometry of
the low-dimensional manifold (up to scale). The right plot in
Figure 1 confirms that AML helps to lower distortion variability.

IV. FUTURE WORK: PARTIAL TRANSFER

AML can build a modular representation of relations encoded
in the latent/low-dimensional space. Hence, AML can enable
a dynamic partial transfer and thus help recover from negative
transfer in cases of large Sim2Real mismatch. In future work
we intend to dynamically adjust the strength of imposing
each latent relation. We would combine the learned relations
g1, ..., gk using prioritization weights w1, ..., wk. These weights
would be optimized by propagating the gradients of the RL loss
w.r.t. the latent state representation (that these weights would
influence). Further extensions could include lifelong learning:
expanding the set of relations with new ones and discarding
the old ones with low weights as lifelong learning proceeds.
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