
Learning to Walk without Dynamics Randomization
Jeremy Dao, Helei Duan, Kevin Green, Jonathan Hurst, Alan Fern

Collaborative Robotics and Intelligent Systems Institute
Oregon State University

Corvallis, Oregon
{daoje, duanh, greenkev, jonathan.hurst, alan.fern}@oregonstate.edu

Abstract—The data-heavy nature of reinforcement learning
often dictates that control policies must be learned in simulation
and then transferred to hardware. This sim-to-real transfer
is not trivial and the model differences between simulation
and reality usually means that naively trained policies will not
transfer. Almost all of the recent robotics reinforcement learning
work has relied on some form of dynamics randomization or
model adaptation in order to overcome the challenge of sim-
to-real. However, we find that we are able to achieve sim-to-
real transfer without relying on these techniques. Furthermore,
we accomplish this for the difficult and highly dynamic task
of bipedal locomotion, transferring high performance policies
capable of walking at 2.6 m/s directly to the bipedal robot
Cassie. We hypothesize and discuss several possible reasons we
do not require dynamics randomization and identify possible new
research directions that our results raise.

I. INTRODUCTION

A large part of reinforcement learning robotics research
focuses primarily on learning control policies in simulation
[2, 8, 6, 12]. The practical constraints of physical robots can
make learning on hardware difficult, time-consuming, and even
unsafe. However, this presents the challenge of transferring
simulation trained policies onto the physical hardware, where
differences between the simulation model and real world can
cause the policy to behave differently than expected. For
example, if the physical robot is heavier than expected, a
simulation trained policy would undershoot the control and
could fail in completing the desired task.

The most common ways to solve this issue is to use
dynamics randomization [5, 2, 8, 3, 1] or some form of
model adaptation [4, 11]. However, we present real hardware
results using simulation trained policies without any dynamics
randomization or model adaptation. Only a single, unchanging
model is used during training and the resulting policy is run
directly on hardware. Furthermore, our model is sufficient
enough to achieve the fastest walking speed ever recorded for
the bipedal robot Cassie.

II. METHODS

Our methods build off of the work presented in Xie et. al
[10] with a few key differences.

A. Policy Input

While [10] included an expert reference trajectory in the
input to the neural network policy, further research has found
this to be ultimately unnecessary. Instead of the reference
trajectory we directly input a clock signal and a commanded

speed. This, along with the estimated robot state, makes our
state input be of size 49.

The clock signal consists of sine and consine functions and
is used to synchronize the motion and produce a cyclic output.
In order to control the speed of the robot, we input a single
floating point value into the policy that corresponds to the
desired center of mass speed of the robot. This desired speed
is also used the reward calculation, detailed in section II-C.

B. Training Procedure

Similar to [10] we first train to match an expert reference
trajectory, then use it as a starting point to bootstrap the
learning and optimize the policy with a more “natural” reward
function like matching a desired center of mass speed. How-
ever, we expand upon this process by subsequently training
on larger and larger ranges of desired speeds and stepping
frequencies, eventually allowing us to learn policies capable
of walking at speeds between 0 and 3 m/s and stepping
frequencies between 1.19 and 2.38 Hz. In total, we train in 4
separate stages: (1) to match the reference trajectory at speeds
between 0 and 1 m/s, (2) to match a commanded forward
velocity between 0 and 1 m/s at a stepping frequency of 1.19
Hz, (3) we expand the commanded speed range to [0, 2] m/s
and the stepping frequency range to [1.19, 1.76] Hz, and (4)
we expand the commanded speed range to [0, 3] m/s and the
stepping frequency range to [1.19, 2.38] Hz.

C. Reward

The first reward function used is a reference trajectory
matching reward as described in [10].

After a policy is trained using the reference trajectory
matching reward, we use it as the initial policy to subsequently
train using a “speed matching” reward function, This reward
incentivizes walking forward in a straight line at the com-
manded speed while facing forward. It consists of 4 terms: a
center of mass velocity term (absolute value of the difference
between the pelvis x velocity and the desired x velocity),
an orientation term (difference between the current pelvis
orientation and forward facing orientation), a “straight line”
term (magnitude of pelvis y position), and a “drift” term
(magnitude of pelvis y velocity). Similar to the reference
trajectory reward, each term is normalized and a weighted
sum is taken.



Fig. 1. The same simulation trained policy is shown in the 4 above still frames. The policy is able to produce the same motion when transferred directly to
hardware and can do so over different unseen terrains (rubber treadmill, artificial turf, and concrete asphalt are shown here).

III. RESULTS

Using our method, we are able to train policies that are
capable of walking at speeds between 0 and 3 m/s and at
stepping frequencies between 1.19 and 2.38 Hz in simulation.
We are then able to directly transfer these policies to hardware
where we see a very similar motion and can get our Cassie
robot to walk at a max speed of 2.6 m/s. Attempting to
walk at speeds higher than this causes the robot to become
unstable. We believe that this is because the robot physically
doesn’t have enough inertia to oppose the momentum of the
leg swinging at higher speeds. Using this same policy we
run hardware tests on three different types of surfaces: (1)
the rubber tread of our treadmill, (2) artificial turf, and (3)
concrete asphalt. We find that the policy can generalize and
produce very similar behaviors on the varying terrains.

Furthermore, our policies are able to generalize to unseen
stepping frequencies. A policy trained on only a single step-
ping frequency of 1.19 Hz is able to handle unseen larger
stepping frequencies. We plan to show this result on hardware
in the near future.

We believe that these generalizations show the validity of
our results and are indicative of successful sim-to-real transfer.
Videos of these experiments can be seen in at https://www.
youtube.com/watch?v= YAmx3xFMz8.

IV. DISCUSSION

Though we achieve great hardware results, we are unsure of
exactly why we can do direct sim-to-real transfer. However, we
hypothesize several possible reasons and discuss them below.

A. Modeling

Extra care was taken to model certain aspects like actuator
delay and reflected inertia that other works tend to leave out
[1, 3, 4, 11]. The reflected inertia of the motors is included
in our MuJoCo [9] simulation model (defined as “armature”
in MuJoCo) and actuator delay is modeled by delaying when
torque commands are actually executed. Desired motor torques
are stored in a buffer first, before actually being applied 6
times (0.003 seconds) after being “sent” by the simulator. It is
possible that these modeling aspects are extremely important
for sim-to-real and are the reason for our success. Actuator
delay is undoubtedly present in all hardware systems and
taking this into account can help the policy be more robust, by

encouraging it to not require a specific command to happen
a specific time. This is especially important in contact-heavy
tasks where relying on a contact to happen at a specific time
can make the control very brittle.

However, previous works have also observed these modeling
aspects to not be enough for sim-to-real transfer. [2] utilized
a learned actuator model from hardware data and [8] included
latency in their model, but both works still required dynamics
randomization to achieve successful transfer.

We plan to test this hypothesis in the future by taking these
features out of our model and retraining policies using the
same training procedure. Whether or not these polices can
successfully transfer to hardware will provide some evidence
for whether or not reflected inertia and actuator delay are
important for sim-to-real transfer.

B. Hardware

One major difference between our work and other works
that show successful sim-to-real transfer is that our hardware
has in built compliance through the use of springs. Springs
have been shown to make a system robust to contact timing [7]
and it could be possible that this extra compliance can make
the policy inherently more robust to model differences. Ideally,
we would test this by swapping out the springs in Cassie
with rigid plates and seeing if we can still achieve sim-to-real
transfer. Unfortunately, due to the design of the hardware, this
can not be done without damage to the robot. Our plan is to
test this with sim2sim experiments. We could train multiple
policies each with different fixed inaccurate models and then
test them on a soft spring model and a rigid spring model.
If more policies work on the soft spring model than the rigid
spring, it might indicate that hardware compliance through
springs allow the policy to get away with a more inaccurate
model.

ACKNOWLEDGMENT

We thank Zhaoming Xie and Michiel van de Panne for their help
and collaboration in starting this work. We thank Pedro Morais for
his help in setting up our training framework. This work is supported
by NSF Grant No. IIS-1849343, DGE-1314109 and DARPA Contract
W911NF-16-1-0002.

https://www.youtube.com/watch?v=_YAmx3xFMz8
https://www.youtube.com/watch?v=_YAmx3xFMz8


REFERENCES

[1] Van Baar. Sim-to-Real Transfer Learning using Robustified
Controllers in Robotic Tasks involving Complex Dynamics.
2019.

[2] Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bel-
licoso, Vassilios Tsounis, Vladlen Koltun, and Marco Hutter.
Learning agile and dynamic motor skills for legged robots.
Science Robotics, 4(26):1–20, 2019. ISSN 24709476. doi:
10.1126/scirobotics.aau5872.

[3] Ofir Nachum, Michael Ahn, Hugo Ponte, Shixiang Gu, and
Vikash Kumar. Multi-Agent Manipulation via Locomotion
using Hierarchical Sim2Real. pages 1–14, 2019. URL http:
//arxiv.org/abs/1908.05224.

[4] Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S. Fear-
ing, Pieter Abbeel, Sergey Levine, and Chelsea Finn. Learning
to adapt in dynamic, real-world environments through meta-
reinforcement learning. 7th International Conference on Learn-
ing Representations, ICLR 2019, pages 1–17, 2019.

[5] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and
Pieter Abbeel. Sim-to-Real Transfer of Robotic Control with
Dynamics Randomization. Proceedings - IEEE International
Conference on Robotics and Automation, pages 3803–3810,
2018. ISSN 10504729. doi: 10.1109/ICRA.2018.8460528.

[6] Jan Peters and Stefan Schaal. Policy gradient methods for
robotics. IEEE International Conference on Intelligent Robots
and Systems, pages 2219–2225, 2006. doi: 10.1109/IROS.2006.
282564.

[7] Siavash Rezazadeh, Christian Hubicki, Mikhail Jones, Andrew
Peekema, Johnathan Van Why, Andy Abate, and Jonathan
Hurst. Spring-Mass Walking With ATRIAS in 3D: Robust
Gait Control Spanning Zero to 4.3 KPH on a Heavily Un-
deractuated Bipedal Robot. Dynamic Systems and Control
Conference, 10 2015. doi: 10.1115/DSCC2015-9899. URL
https://doi.org/10.1115/DSCC2015-9899. V001T04A003.

[8] Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai,
Danijar Hafner, Steven Bohez, and Vincent Vanhoucke. Sim-
to-Real: Learning Agile Locomotion For Quadruped Robots.
In Proceedings of Robotics: Science and Systems, Pittsburgh,
Pennsylvania, June 2018. doi: 10.15607/RSS.2018.XIV.010.
URL http://www.roboticsproceedings.org/rss14/p10.html.

[9] Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A
physics engine for model-based control. IEEE International
Conference on Intelligent Robots and Systems, pages 5026–
5033, 2012. ISSN 21530858. doi: 10.1109/IROS.2012.6386109.

[10] Zhaoming Xie, Patrick Clary, Jeremy Dao, Pedro Morais, Jonan-
than Hurst, and Michiel Van De Panne. Learning Locomotion
Skills for Cassie: Iterative Design and Sim-to-Real. Conference
on Robotic Learning, (CoRL), 2019.

[11] Wenhao Yu, Visak CV Kumar, Greg Turk, and C. Karen Liu.
Sim-to-Real Transfer for Biped Locomotion. 2019. URL http:
//arxiv.org/abs/1903.01390.

[12] Marvin Zhang, Sharad Vikram, Laura Smith, Pieter Abbeel,
Matthew J. Johnson, and Sergey Levine. Solar: Deep structured
representations for model-based reinforcement learning. 36th
International Conference on Machine Learning, ICML 2019,
2019-June:12861–12874, 2019.

http://arxiv.org/abs/1908.05224
http://arxiv.org/abs/1908.05224
https://doi.org/10.1115/DSCC2015-9899
https://doi.org/10.1115/DSCC2015-9899
https://doi.org/10.1115/DSCC2015-9899
https://doi.org/10.1115/DSCC2015-9899
http://www.roboticsproceedings.org/rss14/p10.html
http://www.roboticsproceedings.org/rss14/p10.html
http://www.roboticsproceedings.org/rss14/p10.html
http://arxiv.org/abs/1903.01390
http://arxiv.org/abs/1903.01390

	Introduction
	Methods
	Policy Input
	Training Procedure
	Reward

	Results
	Discussion
	Modeling
	Hardware


