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Abstract—BlenderProc is an open-source and modular pipeline
for rendering photorealistic images of procedurally generated 3D
scenes which can be used for training data-hungry deep learning
models. The presented results on the tasks of instance segmenta-
tion and surface normal estimation suggest that our photorealistic
training images reduce the gap between the synthetic training
and real test domains, compared to less realistic training images
combined with domain randomization. BlenderProc can be used
to train models for various computer vision tasks such as
semantic segmentation or estimation of depth, optical flow, and
object pose. By offering standard modules for parameterizing
and sampling materials, objects, cameras and lights, BlenderProc
can simulate various real-world scenarios and provide means
to systematically investigate the essential factors for sim2real
transfer.

I. INTRODUCTION

With the advent of deep neural networks, the demand for
accurately annotated training images has grown dramatically,
resulting in large real and synthetic datasets [1]–[4]. However,
the neural networks are robust only when trained on sufficient
in-domain data. In dynamic robotic environments and tasks
like object pose estimation, the labeling effort often prohibits
the use of real annotated data.

Learning in simulation is appealing, especially when con-
sidering methods that let the robot automatically generate the
required models. On the other hand, the gap between the
synthetic training and real test domains (a.k.a. the sim2real
gap) prevents algorithms to generalize to the real domain.
However, several works [5]–[7] have already shown that more
realistic training images lead to better sim2real results.

BlenderProc [8] offers a fully configurable pipeline for
procedurally generating scenes and rendering photorealistic
training images. The pipeline is built on top of Blender [9],
an open-source project which offers a variety of relevant
features through a stable API with years of optimization and
an active community. The Blender’s physically accurate ray
tracer, cycles, is used for rendering. A typical run of the
pipeline consists of loading a set of objects, sampling object
poses with the aid of a physics engine, randomizing object
materials, sampling cameras and lights, and rendering that
generates modalities such as color, depth, surface normals,
semantic segmentation or optical flow. All these contributions
go far beyond the Blender feature set and are fully automated
using a single, portable config file.

Fig. 1: Photorealistic images and labels synthesized with
BlenderProc. Left: Color, depth, surface normal and semantic
labels. Right: An example training image annotated with 6D
object poses used in the presented sim2real experiment.

II. RELATED WORK

A crucial feature of BlenderProc is the possibility to render
with a ray tracer, which gives significantly better results than
any rasterizer can produce because it resembles the actual
physical process of light transport. Equally important are mate-
rial properties which are determined by factors like roughness
and specularity. Even if they are not accurately modelled,
we show that they can still be used for physically plausible
domain randomization. In Table I we compare features with
the NVIDIA Deep learning Dataset Synthesizer (NDDS) [10],
ViSII - A VIrtual Scene Imaging Interface [11], AI Habitat
[12] and Stilleben [13].

NDDS[10] ViSII[11] Habitat[12] Stillleben[13] BP
real ray tracing ⊗ X ⊗ ⊗ X
semantic segm. X X X X X
depth rendering X X X X X
optical flow ⊗ X X ⊗ X
surface normals ⊗ X X X X
object pose X ( X ) X X X
bounding box X ( X ) X ⊗ X
physics module X X X X X
camera sampling X X X X X
pbr materials ⊗ X ⊗ ⊗ X
docu for each fct. ⊗ X X ⊗ X
editing via GUI X ⊗ ⊗ ⊗ X

TABLE I: Features in BlenderProc (BP) and other simulators
(2020).



In comparison to these four simulators, BlenderProc offers
richer features towards simplified sim2real transfer. Real-time
capability is often not required and the whole BlenderProc
pipeline takes less than 2 seconds for images like in Fig. 1 on
a single GPU machine. Large datasets (>100K images) can
be generated on an 8-GPU server in a few hours. Furthermore,
we already support loaders for a variety of datasets: SceneNet
[14], ShapeNet [2], Replica [15], SUNCG [3], T-LESS [16],
Linemod [17], Linemod-Occluded [18], MVTec ITODD [19],
HomebrewedDB [20], YCB-Video [21], Rutgers APC [22],
Doumanoglou et al. [23], Tejani et al. [24], TUD Light [4], and
Toyota Light [4]. Additionally, we are already in the process
of integrating 3D-Front and 3D-Future [25], [26].

III. EXPERIMENTS

In the following, we investigate the sim2real capability
of photo-realistic data generated by BlenderProc on the task
of instance segmentation on the LineMod-Occluded (LM-O)
dataset [18]. The dataset provides eight object models with
imperfect geometry and texture acquired with KinectFusion-
like techniques. We train a Mask R-CNN with Resnet50
backbone on 50K synthetic RGB images that are originally
generated for the BOP Challenge 2020 [4].

The objects are placed into an open cube mapped with
randomized PBR textures [27]. Object material properties like
metallicness, roughness and specularity are also randomized.
For details and exact data reproduction we refer to the Blender-
Proc config file [28]. An example of the synthetic training data
is depicted in Fig. 1 on the right.

To assess the sim2real performance of our data, we com-
pare it to the popular render&paste technique using OpenGL
renderings on real backgrounds combined with strong domain
randomization [29], using 50K images as well. Qualitative
test results on LM-O are shown in Fig. 2. The Mask R-CNN
models were pretrained on COCO and fine-tuned on the re-
spective datasets. As found by Hinterstoisser et al. [30], when
fine-tuning on the domain-randomized OpenGL data, freezing
the complete backbone is necessary to avoid overfitting to
the synthetic domain. This is accounted to the domain gap
of low-level image statistics between real and OpenGL data.
Interestingly, training on synthetic data generated by Blender-
Proc allows unfreezing the backbone which even slightly
improves results. With default hyperparameters from [31], we
achieve a clear improvement from 26.2 (OpenGL+DR) to 33.8
(BlenderProc) Mask mAP50 (+7.6).

Furthermore, we evaluated the reconstruction of surface
normals from color images. We tested here a typical U-Net
architecture, which was trained on simulated images from
BlenderProc in SUNCG scenes and we have shown some
results here on the Replica dataset, see Fig. 3.

IV. CONCLUSION

In this work, we have shown sim2real results on in-
stance segmentation using BlenderProc, that compare fa-
vorably against the standard render&paste approach using
OpenGL renderings on real images and strong image-based

(a) OpenGL + real backgrounds
+ domain randomization (DR).

(b) Training on photorealistic im-
ages from BlenderProc.

Fig. 2: Sim2Real Instance Segmentation on LM-O. Notice
that the OpenGL + DR scheme results in missed instances,
false positives and failures under strong occlusions. Using
the BlenderProc data for training all 8 LM-O instances are
segmented well even under challenging conditions.

Fig. 3: From left to right we show here the color input
image, the GT surfaces normals and the reconstructed normals.
The network was solely trained on simulation data from
BlenderProc on SUNCG scenes.

domain randomization. Additionally, we provided qualitative
surface normal reconstruction results.

The transfer from simulation to the real world has become
significantly easier with BlenderProc. Physically-plausible do-
main randomization, like the randomization of material prop-
erties and light, enables sim2real transfer even with imperfect
models like the LineMOD objects. This is crucial to replace
accurate, manual modelling with automatized real2sim meth-
ods performed by robots themselves to close the real2sim2real
cycle.
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