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(a) Reality. (b) Simulation. (c,d) Sim-vs-Real Correlation (SRCC).

Fig. 1: We measure the correlation between visual navigation performance in simulation and in reality by virtualizing reality
and executing parallel experiments. (a): Navigation trajectory in a real space with obstacles. (b): Virtualized replica in
simulation. (c): SRCCSucc for AI Habitat Challenge 2019 setting, showing a relatively low correlation between real and
simulated performance. (d) By optimizing for SRCCSucc, we arrive at simulation settings that are highly predictive of real-world
performance.

Abstract— Does progress in simulation translate to progress
on robots? If one method outperforms another in simulation,
how likely is that trend to hold in reality on a robot? We
examine this question for embodied PointGoal navigation –
developing engineering tools and a research paradigm for
evaluating a simulator by its sim2real predictivity.

First, we develop Habitat-PyRobot Bridge (HaPy), a library
for seamless execution of identical code on simulated agents and
robots – transferring simulation-trained agents to a LoCoBot
platform with a one-line code change. Second, we investigate
the sim2real predictivity of Habitat-Sim [1] for PointGoal
navigation. We 3D-scan a physical lab space to create a
virtualized replica, and run parallel tests of 9 different models
in reality and simulation. We present a new metric called Sim-
vs-Real Correlation Coefficient (SRCC) to quantify predictivity.

We find that SRCC for Habitat as used for the CVPR19
challenge is low (0.18 for the success metric), suggesting that
performance differences in this simulator-based challenge do
not persist after physical deployment. This gap is largely due
to AI agents learning to exploit simulator imperfections –
abusing collision dynamics to ‘slide’ along walls , leading to
shortcuts through otherwise non-navigable space. Naturally,
such exploits do not work in the real world. Our experiments
show that it is possible to tune simulation parameters to improve
sim2real predictivity (e.g. improving SRCCSucc from 0.18 to
0.844) – increasing confidence that in-simulation comparisons
will translate to deployed systems in reality.

I. MAIN

All simulations are wrong, but some are useful.

A variant of a popular quote by George Box

The vision, language, and learning communities have

recently witnessed a resurgence of interest in studying
integrative robot-inspired agents that perceive, navigate, and
interact with their environment. Such work has commonly
been carried out in simulation rather than in real-world
environments. Simulators can run orders of magnitude faster
than real-time [1], can be highly parallelized, and enable
decades of agent experience to be collected in days [2].
Moreover, evaluating agents in simulation is safer, cheaper,
and enables easier benchmarking of scientific progress than
running robots in the real-world.

However, no simulation is a perfect replica of reality, and
AI systems are known to exploit imperfections and biases
to achieve strong performance in simulation which may be
unrepresentative of performance in reality. Notable examples
include evolving tall creatures for locomotion that fall and
somersault instead of learning active locomotion strategies
[3] and OpenAI’s hide-and-seek agents abusing their physics
engine to ‘surf’ on top of obstacles [4].

This raises several fundamental questions of deep interest to
the scientific and engineering communities: Do comparisons
drawn from simulation translate to reality for robotic systems?
Concretely, if one method outperforms another in simulation,
will it continue to do so when deployed on a robot? Should
we trust the outcomes of embodied AI challenges (e.g. the AI
Habitat Challenge at CVPR 2019) that are performed entirely
in simulation? These are questions not only of simulator
fidelity, but rather of predictivity.

In this work, we examine the above questions in the context



of PointGoal Navigation (PointNav) [5] with Habitat and the
LoCoBot robot [6] as our simulation and reality platforms –
focusing on measuring and optimizing the predictivity of
a simulator. High predictivity enables researchers to use
simulation for evaluation with confidence that the performance
of different models will generalize to real robots. We introduce
engineering tools and a research paradigm for performing
simulation-to-reality (sim2real) indoor navigation studies,
revealing surprising findings about prior work.

Habitat-PyRobot Bridge: Simple Sim2Real. We introduce
the Habitat-PyRobot Bridge (HaPy), a software library that
enables seamless sim2robot transfer. As the name suggests,
HaPy integrates Habitat [1], a high-performance, photorealis-
tic 3D simulator, with PyRobot [7], a recently released high-
level API that implements simple interfaces to abstract lower-
level control and perception for mobile platforms (LoCoBot),
and manipulators (Sawyer), and offers a seamless interface for
adding new robots. HaPy makes it trivial to execute identical
code in simulation and reality, and is able to benefit from the
scalability and generalizability of both Habitat and PyRobot.
We will open-source HaPy so that everyone has this ability.

Evaluation Environment. We prepare a real lab space, called
CODA, within which the robot must navigate while avoiding
obstacles. We virtualize this lab space (under different obstacle
configurations) using a Matterport Pro2 3D camera to collect
360◦ scans at multiple points in the room, ensuring full
coverage. These scans are used to reconstruct 3D meshes of
the environment which can be directly imported into Habitat.
This streamlined process is easily scalable and enables quick
virtualization of new physical spaces.

Sim2Real Correlation Coefficient. Our notable thesis is that
simulators need not be a perfect replica of reality to be useful.
Specifically, we should primarily judge simulators not by their
visual or physical realism, but by their sim2real predictivity –
if method A outperforms B in simulation, how likely is the
trend to hold in reality? We propose the use of a quantity we
call Sim-vs-Real Correlation Coefficient (SRCC) to quantify
the degree to which performance in simulation translates to
performance in reality.

Let (si, ri) denote accuracy (episode success rate, SPL
[8], etc.) of navigation method i in simulation and reality
respectively. Given a paired dataset of accuracies for n
navigation methods {(s1, r1), . . . , (sn, rn)}, SRCC is the
sample Pearson correlation coefficient (bivariate correlation).1

SRCC values close to +1 indicate high linear correlation
and are desirable, insofar as changes in simulation perfor-
mance metrics correlate highly with changes in reality per-
formance metrics. Values close to 0 indicate low correlation
and are undesirable as they indicate changes of performance
in simulation are not predictive of real world changes in
performance. Beyond the utility of SRCC as a simulation
predictivity metric, we can also view it as an optimization

1Other metrics such as rank correlation can also be used.

objective for simulation parameters.

Concretely, let θ denote parameters controlling the
simulator (amount of actuation noise, lighting, etc.).
We can view simulator design as optimization problem:
maxθ SRCC(Sn(θ), Rn) where Sn(θ) = {s1(θ), . . . , sn(θ)}
is the set of accuracies in simulation with parameters θ and
Rn is the same performance metric computed on equivalent
episodes in reality. Note that θ affects performance in
simulation Sn(θ) but not Rn since we are only changing test-
time parameters. The specific navigation models themselves
are held fixed. Overall, this gives us a formal approach
to simulator design instead of operating on intuitions and
qualitative assessments.

In contrast, if a simulator has low SRCC but high mean real
world performance, researchers will not be able to use this
simulator to make decisions (e.g. model selection) because
they can’t know if changes to performance in simulation will
have a positive or negative effect on real-world performance.
Every change will have to be tested on the physical robot.

Measuring the Sim2Real Gap. We train and evaluate 9
different learning-based navigation models for PointGoal in
Habitat, using the Gibson dataset [9] for training. Agents
are trained from scratch with reinforcement learning using
DD-PPO [2] – a decentralized, distributed proximal policy
optimization [10] algorithm that is well-suited for GPU-
intensive simulator-based training.

We find that SRCC for Habitat as used for the CVPR19
challenge is 0.603 for the Success weighted by (normalized
inverse) Path Length (SPL) metric and 0.18 for agent success.
When ranked by SPL, we observe 9 relative ordering reversals
from simulation to reality, suggesting that the results/winners
may not be the same if the challenge were run on LoCoBot.

We find that large-scale RL trained models can learn to
‘cheat’ by exploiting the way Habitat allows for ‘sliding’ along
walls on collision. Essentially, the virtual robot is capable
of cutting corners by sliding around obstacles, leading to
unrealistic shortcuts through parts of non-navigable space
and ‘better than optimal’ paths. Naturally, such exploits do
not work in the real world where the robot stops on contact
with walls.

We optimize SRCC over Habitat design parameters and
find that a few simple changes improve SRCCSPL from 0.603
to 0.875 and SRCCSucc from 0.18 to 0.844. The number of
rank reversals nearly halves to 5 (13.8%). Furthermore, we
identify highly-performant agents in both this new simulation
and on LoCoBot in real environments.

While our experiments are conducted on PointNav, we
believe our software (HaPy), experimental paradigm (sim2real
predictivity and SRCC), and take-away messages will be
useful to the broader community.

Please refer to our arxiv paper and project page for more
information.

https://arxiv.org/abs/1912.06321
https://abhiskk.github.io/sim2real 
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