
Accurate High Fidelity Simulations for Training
Robot Navigation Policies for Dense Crowds using

Deep Reinforcement Learning
Jing Liang

Dept. of Computer Science
University of Maryland

College Park, USA

Utsav Patel
Dept. of Computer Science

University of Maryland
College Park, USA

Adarsh Jagan Sathyamoorthy
Dept. of Electrical Engg.

University of Maryland
College Park, USA

Dinesh Manocha
Dept. of Computer Science

University of Maryland
College Park, USA

Abstract—We present a novel high fidelity 3-D simulator that
significantly reduces the sim-to-real gap in training collision
avoidance policies based on a Deep Reinforcement Learning
(DRL) for dense crowd scenarios. We make our simulations more
accurate by modeling realistic crowd and pedestrian behaviors,
along with friction, sensor noise, and delays in the simulated
robot model. We also include a mechanism to incrementally
control the randomness and complexity of the training scenarios
to achieve better convergence and generalization capabilities
in the collision-avoidance policy trained in our simulator. We
have tested the capabilities and effectiveness of our simulator
by training policies that fuse data from multiple perception
sensors such as a 2-D lidar and a depth camera to detect
pedestrians, and compute smooth, collision-free velocities for the
robot. We observe that these policies outperform prior dynamic
navigation techniques in terms of standard metrics such as rate
of successfully reaching the goal, trajectory length, average time
to reach the goal, and trajectory smoothness.

Index Terms—Sim-to-real, Deep Reinforcement Learning,
Robot Collision Avoidance.

I. EXTENDED ABSTRACT

Recent developments in mobile robotics have allowed au-
tonomous ground robots to be deployed in indoor and outdoor
environments such as hospitals, hotels, malls, airports, ware-
houses, sidewalks, etc. These robots are used for surveillance,
inspection, delivery, and cleaning, or as social robots. In
such scenarios, robots are required to be able to navigate
smoothly and avoid collisions, especially with dynamic agents
or pedestrians. The crowd density in these scenarios is high
and typically varies between 1-3 pedestrians per square meter.

There has been considerable work on learning-based col-
lision avoidance for mobile robots operating in such dense
scenarios. Specifically, Deep Reinforcement Learning-based
(DRL) methods [1]–[3] have demonstrated better collision
avoidance behaviors, lower time to reach the goal, and higher
mean velocity of the robot in comparison to traditional Veloc-
ity Obstacle (VO) methods [4]–[6]. These methods typically
use a single sensor such as a lidar, depth camera, or RGB
camera for obstacle detection.

Such DRL-based collision avoidance policies are trained in
a simulator and then transferred to a real robot. Due to this, the
policies almost always suffer from a sim-to-real gap, i.e., their
performance in the real world is worse than their performance
in the simulation. A few reasons which cause the sim-to-real
gap are 1) unmodeled sensor noise, friction and delays in the
robot hardware [7], and 2) difficulty in recreating real-world

The 1-minute teaser video can be found here.

robot-pedestrian interactions with variable complexity in the
simulator. A policy trained in a simulator with such capabilities
would also avoid overfitting.

Apart from sim-to-real transfer issues, the performance of
the policy also depends on what perception sensors are used to
train it. For instance, algorithms that are trained using a single
2-D lidar [3] may perform well in dense scenarios but lack the
ability to differentiate between animate and inanimate obsta-
cles, and also cannot handle thin obstacles such as poles/legs of
furniture. Methods which use several perception sensors [1],
[2] exhibit good performance in moderately dense crowds but
not in high-density crowds, and are susceptible to perception
errors. Their trajectories also tend to be jerky and oscillatory.
In addition, these methods are trained either in a simple 2.5D
simulator or using generated trajectories, therefore lacking the
scalability to train policies that use sensors such as RGB/depth
cameras which generate high dimension data.

Main Results: We present a novel high-fidelity 3-D simula-
tor which accurately models real-world crowd behavior, sensor
noise, frictions and delays of the robot, to close the sim-to-real
gap while training DRL policies for dense crowd navigation.
Our simulator also allows us to incrementally adjust the
complexity and randomness of the training scenarios. This
simulator has been used to train works such as CrowdSteer [8],
and DenseCAvoid [9], novel collision avoidance policies that
fuse data from inexpensive perception sensors such as a 2-D
lidar and a depth (RGB-D) camera to sense obstacle features.
Our simulator helps the policies implicitly learn different kinds
of robot interactions with the pedestrians, and significantly
reduces the sim-to-real gap. The robot’s velocities and be-
havior in the simulation and in real-world scenarios match
over 80% of the time, demonstrating our simulator’s sim-to-
real transfer capabilities whereas previous methods perform
well in simulations but exhibit oscillatory/jerky motions in real
hardware.

We briefly discuss our simulator development in this ex-
tended abstract. For more details and results about our collision
avoidance policies, we direct the readers to [8]–[10].

A. Our Simulation Approach
1) Background: Several works have discussed the reasons

for the sim-to-real gap and methods to mitigate them [7],
[11]. For training a crowd navigation policy in simulation, the
simulated crowd’s behavior must try to mimic the real-world
behavior. To this ends, works such as [12]–[15] have discussed
several dynamics, physiological and psychological factors that

https://drive.google.com/file/d/19ohlMEKhrQc00S1dIpZ9sxdXf6IaBcp8/view?usp=sharing

Figure 1: Left to right: Some of the training scenarios created in our simulator. From left: 1. Static scenarios with two Turtlebots,
2. Corridor with dynamic pedestrians, 3.Scenario with random number of standing and walking pedestrians, and 4.Scenario
with high occlusions.

should be accounted for. [16] demonstrates a modular structure
for developing a crowd simulator. We extend the concepts from
these works while developing our simulator.

2) Simulator Development: All the simulations are created
using ROS Kinetic and Gazebo 8. The main components
involved in the development of our simulator are: 1. Modeling
pedestrian movement, and 2. Scenarios and modified robot
model in the simulation. We briefly discuss them below.

Pedestrian Behavior Modeling: Pedestrian velocities in
crowds depend on several complex factors such as the crowd’s
density, stride length of a person, and need for personal space.
The fundamental diagram [12] provides an inverse relationship
between individual pedestrian velocities and the crowd density.
In order to create more accurate and realistic simulations,
we account for the density-dependent behaviors based on the
aforementioned factors.

We model each pedestrian in our simulation as a disk on a 2-
D plane with the following state space: [r ~p ~vcurr ~vpref] ∈ R7.
Here, r denotes the disc radius. ~p,~vcurrand~vpref represent the
current 2-D position, current velocity and the preferred veloc-
ities of the pedestrians respectively. The 2-D disk provides a
conservative model for a pedestrian and makes computations
easier. We relate a pedestrian’s natural walking velocity (V)
with physiological (pedestrian’s height and stride length), and
psychological (need for personal space) factors using the
following equation:

V = min

(
||~vpref ||,

(
Sα

H(1+β)

)2
)

(1)

where S is the available space in front of the pedestrian, H
(height/1.72) is a height normalization factor, α and β are
constants that account for stride of the pedestrian.

Scenario and Robot Model Development While developing
a simulator and scenario for training navigation policies, it is
important to strike a balance between: (i) the generality of
the scenario such that overfitting is avoided, (ii) maintaining
the complexity of the training scenarios such that the policy
converges. We achieve this by training the policy, starting from
simple scenarios, and then moving on to parallelly training in
more complex scenarios (see Fig. 1). We vary each scenario’s
complexity and randomness by using a complexity factor (c)
for the different scenarios, and by correlating it with a certain
attribute of the scenario.

We classify our scenarios into three broad categories and
explain the complexity factor for each category.

a) Static Scenario: This category of scenarios contains
only immovable obstacles in an enclosed space of constant
area, and the policy learns goal-reaching and static obstacle

avoidance behaviors in these scenarios. We link the complexity
factor c to the number of obstacles in the scenario. As c
increases, obstacles are randomly placed in the scenario. This
reduces the navigable free space available for the robot.

b) Random Static and Dynamic Obstacles: In this cat-
egory of scenarios, c is linked to the number of static and
dynamic obstacles and the magnitude of the velocity of
dynamic pedestrians. The simulated pedestrians walk with the
velocities given by equation 1. As (c) is increased, the training
scenario has more randomly spawned static obstacles (less
traversable space for the robot), and the robot needs to handle
dynamic pedestrians that walk faster (by using higher than
average values for the constants in equation 1).

c) Scenario with Occluded Obstacles: The robot learns
to perform several sharp maneuvers and avoid pedestrians
who can only be observed in close proximity due to the
arrangement of walls (see Fig. 1) in this category of scenarios.
Here, c is correlated with the occlusion % in the environment,
and the number of dynamic obstacles. The occlusion % is
dependent on the FOV of the camera and is defined as(

Angle not visible
Camera’s FOV

)
×100%. As c increases, the occlusions become

more severe and the robot faces more dynamic obstacles in
random intervals.

The complexity factor c gives more control to incrementally
change the randomness and complexity of the scenarios. This
aids in training convergence, and since all scenarios include
some randomness, overfitting is prevented.

d) Robot Model: We use a modified model of Turtlebot 2
in our simulations for training our collision avoidance policies.
We compare the velocities of a real Turtlebot with a laptop
and sensors mounted on it with a simulated robot and use
system identification techniques to deduce additional motor
friction and inertia parameters that the simulated robot model
must include to be more accurate. The simulated lidar in
Gazebo generates proximity data similar to a real lidar to
a satisfactory level. In addition, we include Gaussian noise
N (0, 0.2) in the depth images, and the robot’s goal location
in the simulation and increase the delay in subscribing to the
robot’s current velocity observations in ROS. The position
where the depth camera is mounted is also varied during
training to provide different perspectives of the obstacles to
the robot, which improves the generalization of the trained
policy. These modifications help to more accurately recreate
phenomena that happen only in hardware in our simulations.

In conclusion, we present a novel high fidelity 3-D simulator
for training DRL-based collision avoidance policies for dense
crowd scenarios that significantly reduces the sim-to-real gap
in the trained policies. For more details on the results and
implementation, we direct the reader to [8].

REFERENCES

[1] Y. F. Chen, M. Liu, M. Everett, and J. P. How, “Decentralized non-
communicating multiagent collision avoidance with deep reinforcement
learning,” in ICRA. IEEE, 2017, pp. 285–292.

[2] M. Everett, Y. F. Chen, and J. P. How, “Motion planning among dynamic,
decision-making agents with deep reinforcement learning,” in IROS.
IEEE, 2018, pp. 3052–3059.

[3] P. Long, T. Fan, X. Liao, W. Liu, H. Zhang, and J. Pan, “Towards
Optimally Decentralized Multi-Robot Collision Avoidance via Deep
Reinforcement Learning,” arXiv e-prints, p. arXiv:1709.10082, Sep
2017.

[4] F. Large, D. A. Vasquez Govea, T. Fraichard, and C. Laugier, “Avoiding
Cars and Pedestrians using V-Obstacles and Motion Prediction,” in
Proc. of the IEEE Intelligent Vehicle Symp., Pisa (IT), France, Jun.
2004, voir basilic : http://emotion.inrialpes.fr/bibemotion/2004/LVFL04/
note: Poster session address: Pisa (IT). [Online]. Available: https:
//hal.inria.fr/inria-00182054

[5] J. van den Berg, Ming Lin, and D. Manocha, “Reciprocal velocity ob-
stacles for real-time multi-agent navigation,” in 2008 IEEE International
Conference on Robotics and Automation, May 2008, pp. 1928–1935.

[6] J. P. van den Berg, S. J. Guy, M. C. Lin, and D. Manocha, “Reciprocal
n-body collision avoidance,” in ISRR, 2009.

[7] M. Neunert, T. Boaventura, and J. Buchli, Why Off-The-Shelf Physics
Simulators Fail In Evaluating Feedback Controller Performance - A
Case Study For Quadrupedal Robots: Proceedings of the 19th Inter-
national Conference on CLAWAR 2016, 10 2016, pp. 464–472.

[8] J. Liang, U. Patel, A. Jagan Sathyamoorthy, and D. Manocha, “Realtime
Collision Avoidance for Mobile Robots in Dense Crowds using Implicit
Multi-sensor Fusion and Deep Reinforcement Learning,” arXiv e-prints,
p. arXiv:2004.03089, Apr. 2020.

[9] A. Jagan Sathyamoorthy, J. Liang, U. Patel, T. Guan, R. Chandra, and
D. Manocha, “DenseCAvoid: Real-time Navigation in Dense Crowds
using Anticipatory Behaviors,” arXiv e-prints, p. arXiv:2002.03038, Feb.
2020.

[10] A. J. Sathyamoorthy, U. Patel, T. Guan, and D. Manocha, “Frozone:
Freezing-free, pedestrian-friendly navigation in human crowds,” IEEE
Robotics and Automation Letters, vol. 5, no. 3, pp. 4352–4359, 2020.

[11] W. Yu, V. C. V. Kumar, G. Turk, and C. K. Liu, “Sim-to-real transfer
for biped locomotion,” ArXiv, vol. abs/1903.01390, 2019.

[12] S. Narang, A. Best, S. Curtis, and D. Manocha, “Generating pedestrian
trajectories consistent with the fundamental diagram based on physio-
logical and psychological factors,” PLOS ONE, vol. 10, p. e0117856,
04 2015.

[13] N. Pelechano, J. M. Allbeck, and N. I. Badler, “Controlling individual
agents in high-density crowd simulation,” in Proceedings of the 2007
ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
ser. SCA ’07. Goslar, DEU: Eurographics Association, 2007, p. 99–108.

[14] R. Narain, A. Golas, S. Curtis, and M. C. Lin, “Aggregate dynamics for
dense crowd simulation,” ACM Trans. Graph., vol. 28, no. 5, p. 1–8, Dec.
2009. [Online]. Available: https://doi.org/10.1145/1618452.1618468

[15] A. Braun, S. R. Musse, L. P. L. de Oliveira, and B. E. J. Bodmann,
“Modeling individual behaviors in crowd simulation,” in Proceedings
11th IEEE International Workshop on Program Comprehension, May
2003, pp. 143–148.

[16] S. Curtis, A. Best, and D. Manocha, “Menge: A modular framework
for simulating crowd movement,” Collective Dynamics, vol. 1, pp.
1–40, 2016. [Online]. Available: https://collective-dynamics.eu/index.
php/cod/article/view/A1

https://hal.inria.fr/inria-00182054
https://hal.inria.fr/inria-00182054
https://doi.org/10.1145/1618452.1618468
https://collective-dynamics.eu/index.php/cod/article/view/A1
https://collective-dynamics.eu/index.php/cod/article/view/A1

	Extended Abstract
	Our Simulation Approach
	Background
	Simulator Development

	References

