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Abstract— With the emergence of data-driven techniques,
two uses of simulators for robotics are often conflated: 1)
its ability to be a faithful predictor of agent performance
and 2) its ability to be a useful tool for learning. In this
abstract, we attempt to formalize the value of a simulator for
robotics tasks. In particular, we discuss the different sources
of discrepancy (reality gap) between simulators and the real
world counterparts. Furthermore, we argue that the value of
a simulator is condition on the task that it is being used to
help solve.

I. INTRODUCTION

Historically, the robotics community has had an am-
bivalent relationship with robot simulators. The sentiment
that “simulators are doomed to succeed” has been very
prevalent and has consequently labeled simulation-based
robotics as “unscientific”. The recent advances in data-
driven approaches to solve tasks with embodied agents
could possibly cause us to re-evaluate this position. Still
a proxy for the real world, the simulator is now being
used to facilitate agent learning, and hopefully minimize the
number of trials that have to be run on the real hardware.

The discrepancy between a simulation and the real envi-
ronment that it is meant to represent is sometimes referred
to as the “reality gap” ([1, 2] among many others). If we
can accurately evaluate this gap it is a good proxy for
assessing the value of a simulator. The vast majority of
works that address the simulation-to-real world transfer
learning problem (“sim2real”) propose methods for crossing
this gap without actually explicitly quantifying it ([3]–[5]
among many others). As a result, algorithms that show good
performance in some settings (e.g., where the gap is small)
may completely fail in others, and there are no methods
of predicting transferability a priori. It is also possible that
if we can evaluate the reality gap, we can backpropagate
this as an error signal into a differentiable simulation (e.g.,
[6, 7] among many others) in order to minimize it.

Our objective here is to build a framework for predicting
how useful a specific simulator is to help solve a specific
real-world task.
A. Background and Prior Work

A naive definition of the reality gap based on the standard
agent/environment abstractions (Fig. 1) would be:

Def. 1 (Naive Reality Gap): The “difference” in the re-
sulting observations produced by the simulator and the
real robot hardware for a predefined sequence of control
commands.

There are several issues with Def. 1:
1) It combines in an opaque way the various sources of

the discrepancy. Referring to Fig. 1, there could be
a “gap” in the dynamics, the environment model (for
example how other agents move in the environment),
or in the generation of sensor data based on a render-
ing model. Moreover, errors in upstream models will
compound.

2) It presupposes that real-world fidelity is needed. In
practice, we only require a form of task-conditioned
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Fig. 1. The agent/environment interface for simulation (top) and the
real robot (bottom). An agent receives observations and generates control
commands. The predictive value of a simulator lies in its ability to
faithfully reproduce an estimate of the task performance. A simulator may
also be used in a learning paradigm. In this case, the value of the simulator
lies in how many fewer trials we need to perform on the real robot to
achieve equivalent performance.

fidelity: only the things that are important to solve
the task at hand must be faithfully reproduced in the
simulation.

In [2], the authors propose to estimate a transferability
metric based on a simulation-to-reality disparity measure
which is defined over robot behaviours. In this case evalu-
ating the metric is likely as arduous as deploying directly
onto the real robot in the first place. Another approach is the
“Sim2Real Correlation Coefficient” [8], which is defined as
the Pearson correlation cofficient over “accuracies” in simu-
lation and reality for n methods. Analyzing the intermediate
signals in Fig. 1 is a commonly-used approach to evaluate
the discrepancy in one of the components (e.g. to evaluate
the dynamics error for manipulation [1]). However, this is
myopic and does not consider the ways that different types
of errors in the different components interact, nor does it
necessarily correspond to a good metric of how useful the
simulator is as a tool for learning.

In the remainder of this abstract, we will attempt to for-
malize the concept of the reality gap and clearly separate the
different potential sources of value of a robotics simulator.

II. PRELIMINARIES

We will consider a simulation to encapsulate the dy-
namics simulation, environment modeling, and rendering
aspects shown in Fig. 1. As such, a simulation, S ∈ S
can be considered something that maps control commands
u ∈ U to observations z ∈ Z , conditioned on some internal
environment model state x ∈ Xenv (S : U × Xenv 7→ Z).

A task, T ∈ T , is specified through one or more
evaluation metrics, M , which map a trajectory of N states
(either in the real world or in the simulation) to a real-valued
number:

T , {Mi}mi=1, Mi : XN 7→ R (1)
An agent contains the algorithm that is used to generate



control commands from observations and some internal
representation of state x ∈ Xagent (A : Z × Xagent 7→ U).
Presumably, the algorithm informing this agent is designed
to optimize the specified task evaluation metrics. A learning
agent is able to adapt its behaviour over time by means of a
learning algorithm (A at time k is not necessarily the same
as A at time k + 1). However, we assume here that, for
a stationary environment and task, the learning agent will
converge to a stationary agent for some k large enough.

III. THE SIMULATOR AS A PREDICTOR

The first “value” of a simulator is as a tool to predict.
However, different from Def. 1, we argue that the simula-
tor’s ability to predict task performance rather than exact
observations is what is relevant:

Def. 2 (Predictive Reality Gap): Given a T defined by
evaluation metrics M1:m, and an A that generates trajectory
x1:Nsim in the simulator and x1:Nreal on the real robot given
equivalent starting conditions, then we define the predictive
reality gap (PRG) by the discrepancy of the resulting
evaluation metrics:

PRG ,
m∑
i=1

βi|Mi(X
1:N
sim)−Mi(X

1:N
real)| (2)

where the βi terms are weighting constants that can account
for mismatched units or possibly an increased importance
of one metric over another.

By Def. 2, a simulator can be considered perfectly faith-
ful for a given task if PRG is zero for all possible agents.
This definition is roughly equivalent to the definition in [8],
except with a particular focus on the task performance as
the choice of metric and the 1-norm distance instead of the
bivariate correlation.

The need for the β constants in Def. 2 is undesirable
since it allows some room for subjectivity. But this can be
avoided by considering that in many cases we are interested
in comparing agents rather than finding exact evaluations
of the metrics. As a result we can consider a relaxation
of Def. 2 to the relative case. Given that a task may
contain several evaluation metrics, agents can be arranged
in a partial ordering whose binary relation ≤ is defined by
dominance along all of the available metrics:

A1 ≥ A2 →Mi(X1) ≥Mi(X2) ∀i (3)
where Xj is shorthand for the trajectory produced by agent
Aj (either in the simulator or in the real environment).

Def. 3 (Relative PRG): Given K agents, the relative
predictive ability of a simulator is defined by its ability
to accurate predict the binary relations between agents. Let
Asim = [αij ]i,j=1..K be a matrix whose entries are given
by:

αsim
ij =


1 Asim

i ≥ Asim
j

0.5 Asim
i � Asim

j & Asim
j � Asim

i

0 Asim
i ≤ Asim

j

(4)

where Asim
j (Asim

i ) is agent j (i) applied to the simulation.
We similarly construct Areal. Then the relative predictive
reality gap (RPRG) is given by the 1-norm between these
two matrices that represent the relations in the two partial
orders [9]:

RPRG(A1:K) =

K∑
i,j=1

|αsim
ij − αreal

ij | (5)

According to Def. 3, a simulator is now perfectly faithful
if it produces the identical partial order over agents that
would be produced if the agents were run on the real robot.
This is closely related to the concept of “rank inversion”
[10].

Note that in the case of both PRG and RPRG, the reality
gap is conditioned on the task and agnostic to the agent
(only requires some method of generating trajectories).
Also note that in practice the performance of the agent
in the simulator or (especially) in the real environment
will be stochastic and therefore PRG and RPRG should
be redifined as metrics over distributions and approximated
by sequences of trials.

IV. THE SIMULATOR AS A TEACHER

Independently from the simulator’s predictive ability, it
may have value as a tool for agents that learn. The simulator
now becomes a part of the agent generation process since, as
shown by the dashed lines in Fig. 1, the task performance
may be fed back to the agent. We can assess the value
of the simulator by considering the quality of the agents
that it is able to produce, compared to agents that learn
entirely on the real robot. A simulator is deemed more
valuable if it reduces the number of robot trials that are
needed. To evaluate a sim2real method, either the number
of trials on the real robot is held fixed and the agent
performance on a given task with and without the simulator
is compared, or the number of trials is compared to achieve
equivalent performance with and without simulator pre-
training. However, we argue here that choosing an arbitrary
performance or an arbitrary number of real robot trials can
bias results.

Def. 4 (Learning Reality Gap): Given that a learning
agent, Areal trained entirely on hardware is able to achieve
a performance of Mi..m on task T at convergence, then
the Learning Reality Gap (LRG) is the number of trials on
the real robot needed for an agent trained in simulation and
transferred to the real robot, Asim2real to achieve equivalent
or better performance (Asim2real ≥ Areal) on the real
robot.

In the case of some learning agents or tasks, running trials
on the robot is impossible. For example, the case where a
reinforcement learning agent is using privileged information
in the simulation (such as precise internal state) that is not
available on the real robot. In this case, evaluation of the
LRG is impossible and we must settle for a metric based on
predictive performance such as PRG or RPRG. But this is
problematic since it entangles the simulator’s learning and
predictive values.

Note here that, in contrast to the predictive value, the
value of the simulator as a teacher is conditioned on both
the task and the learning algorithm itself.

We also note that we are make some simplifying assump-
tions: 1) we are not doing any form explicit domain transfer,
for example domain adversarial transfer [3, 11], since this
typically requires some other source of information in the
form of a dataset that is not generated by the simulator, 2)
we are able to reliably detect when the learning algorithm
has reached convergence, both in the simulated case and on
the real robot.
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