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Abstract— In this paper, we study the integration of simu-
lation parameter inference with both model-free reinforcement
learning and model-based control in a novel sequential algo-
rithm that alternates between learning a better estimation of
parameters and improving the controller. Experimental results
suggest that both control strategies have better performance
when compared to traditional domain randomization methods.

I. INTRODUCTION

Advancements in simulation have allowed robotics learn-
ing to become more efficient and realistic in recent years
[1][2][3]. However, there is still a range of possible im-
provements in simulation techniques before they can capture
reality with all its complexities. ”Reality gap” is a term used
when the environment model used in a simulator does not
represent the targeted system accurately enough so we can
achieve the desirable performance when deploying a robot
in the real world.

It is known that oversimplified assumptions or insufficient
numerical precision in solvers can play a major role in how
well a simulator models its target desired system. Existing
prior knowledge about simulation parameters is often incor-
porated through a series of trial and error experiments until
a good approximation is reached. This process is inefficient
and time consuming as it involves running non-optimal
control strategies on expensive and fragile robots.

In this work, we build upon the idea of using probabilistic
inference to learn distributions over simulation parameters
[3]. This technique leverages recent advances in likelihood-
free inference (LFI) [4] for Bayesian analysis to learn poste-
riors over simulation parameters based on rollouts obtained
from the target system. Previous work [3] managed to learn
distributions over parameters, but it required a reasonable
initial controller that was able to explore the dynamical
system in relevant regions of the state-space. Alternatively, in
this paper we propose an end-to-end approach that combines
posterior updates with controller improvement.

II. ONLINE BAYESSIM

Here we present the main contribution of the paper: Online
BayesSim. We leverage previous work in likelihood-free
inference to simultaneously improve a controller and learn
a distribution over the simulator parameters. Additionally,
we propose a methodology to automate the computation of
a low-dimensional representation of state-action trajectories
using Recurrent Neural Networks (RNN). The difficulty in
representing high-dimensional time series has been one of

the major reasons why LFI methods do not scale well to
higher dimensional spaces. We show that with an RNN,
latent representations from entire trajectories can be learnt
and used directly for the posterior estimation. This removes
the need to manually define meaningful summary statistics,
which sometimes, can be a quite difficult and complex task.

The use of Bayesian inference can be borrowed from more
traditional statistics methods such as approximate Bayesian
computation (ABC) [5]. Improvements over this method such
as Rejection ABC [6], Markov Chain Monte Carlo ABC
(MCMC-ABC) [7], Sequential Monte Carlo ABC (SMC-
ABC) [8] and finally the ε-free approach [4] have enabled
Bayesian inference on a wide range of problems.

Formally, we start with a stochastic controller πβ(at|st)
and no prior knowledge of the true parameters represented
by an uniform prior p(θ). In the first iteration πβ(at|st)
is initialised with samples from the uniform prior p(θ).
Trajectories Ss,As are collected using current πβ(at|st)
which are then used to update our Mixture of Gaussians
model qφ(θ|z). New data Sr,Ar is then collected in the
target system (e.g. real environment, proxy simulator and
etc) using the same controller which is subsequently used
to recover a new posterior and update the control strategy.
p(θ|S,A = Sr,Ar). The prior p(θ) is then replaced by
the new posterior and the algorithm iterates until we achieve
the desired controller performance. Details can be seen in
Algorithm 1.

III. RESULTS

A. Classic Control Tasks

Online BayesSim have been evaluated on several control
tasks as shown on table I. We have compared the log-
likelihood of the posteriors recovered by our algorithm
against recent work in LFI. It can be seen that Online
BayesSim has outperformed current work in most of the
tasks. This shows that online learning coupled with iterative
updates can result in sharper posteriors.

B. Experiments on a physical robot

This section presents experimental results with a physical
robot equipped with a skid-steering drive mechanism (Fig-
ure 1). We modelled the kinematics of the robot based on a
modified unicycle model, which accounts for skidding via an
additional parameter [9]. The parameters to be estimated via
Online BayesSim are the robot’s wheel radius, axial distance,
i.e. the distance between the wheels, and the displacement of
the robot’s instant centre of rotation (ICR) from the robot’s



Problem Parameter Prior Online BayesSim BayesSim RFF ε-Free
CartPole Length / Mass [0.1, 1.0] 4.66±0.22 2.68±0.08 2.88±0.15
Pendulum Length / Mass [0.1, 1.0] 4.076±0.12 3.89±0.34 3.332±0.41
Fetch Push Friction [0.1, 2.0] 2.09±0.12 2.18±0.19 2.10±0.27
Fetch Slide Friction [0.1, 2.0] 3.24±0.21 3.12±0.08 2.55±0.26
Hopper Lat. Friction [0.1, 0.5] 3.25±0.33 3.134±0.11 3.384±0.25
Acrobot Link Mass 1 & 2 [0.5, 2.0] 2.85±0.12 1.534±0.22 1.210±0.32

Link Length 1 & 2 [0.1, 1.5] 2.25±0.13 1.426±0.11 1.012±0.21

TABLE I: Mean and standard deviation of log-likelihood of the joint distribution for offline and online likelihood-free
methods, applied to different problems and combination of parameters

Fig. 1: (Left) Skid-steer Robot. (Center) As posteriors are refined the controller has fewer overshoots on the circular trajectory.
(Right) Cumulative average of the cost over time.

Algorithm 1 Online BayesSim

1: //observed and real trajectories: Ss,As and Sr,Ar

2: //RNN Mixture of Gaussians (MoG) estimator: qφ(θ|z)
3: //RL Policy: πβ(at|st)
4: Inputs: total steps, policy train steps, mog train steps,

num sampled params, p(θ0)
5: Outputs: qφ(θ|z), πβ(at|st)
6:
7: Initialize weights β and φ randomly
8:
9: t← 1

10: repeat
11: θt ∼ p(θt−1)
12: Ss,As ← Run πβt(at|st) in sim with θt.
13: βt ← βt−1 + λ∇πβt(at|st)
14: φt ← φt−1 + λ∇qφ(θt|ψγt(Ss,As))
15: Sr,Ar ← Run πβt

(at|st) on real env.
16: p(θt|S,A)← qφ(θt|ψγt(Sr,Ar))
17: p(θt)← p(θt|S,A)
18: t← t+ 1
19: until t < total steps or convergence reached

centre. We have used DISCO [10] as the robot’s controller,
a stochastic non-linear MPC based on MPPI [11]

The results presented in Figure 1 and Figure 2 show the
qualitative and quantitative improvement in the control task
as the posterior distribution is refined. As expected, once
the robot is able to collect data from the real environment
and refine its knowledge of the world, the results improve
significantly.

Fig. 2: Posterior distribution for the second iteration of
online BayesSim on the experiments with a physical robot.
Available measured values are indicated by a dashed line.

IV. DISCUSSION

This paper presented a principled framework for solving
the ”reality gap” problem in robotics simulators, combin-
ing parameter estimation with policy improvement. The
approach is capable of leveraging these two problems within
a single framework, where sequential improvements in con-
troller performance are used to estimate better simulation
parameters and the associated uncertainty.
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