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Abstract—In recent years Sim2Real approaches have brought
great results to robotics. Techniques such as model-based learning
or domain randomization can help overcome the gap between
simulation and reality, but in some situations simulation accuracy
is still needed. An example is agricultural robotics, which needs
detailed simulations, both in terms of dynamics and visuals. How-
ever, simulation software is still not capable of such quality and
accuracy. Current Sim2Real techniques are helpful in mitigating
the problem, but for these specific tasks they are not enough.

I. INTRODUCTION

Sim2Real methods bring significant advantages to robotics.
They allow to test and train robots to perform tasks without
having direct access to the physical environment. This accel-
erates the development by providing a readily available and
reproducible environment. In addition to this, the capability of
simulating physics at rates greater than reality can accelerate
testing and training when using learning approaches.

These advantages are particularly helpful to agricultural
and Agri-food robotics. Compared to industrial applications,
agricultural tasks are subject to additional constraints that
can restrict the use of the real environment. In particular,
agriculture is bound to the evolution of seasons, and testing
of particular tasks is limited to extremely narrow time ranges
within the year. Also, performing tasks such as harvesting [1]]
and pruning [2] changes the environment irreversibly. This
implies the necessity of a great number of plants to experiment
on, which are often not available, as they are valuable to the
agricultural production and cannot risk to be damaged.

However, simulating agricultural robotics setups is ex-
tremely challenging in terms of visual rendering and physics
modeling. Natural elements can have specific texture and
reflective characteristics that are problematic to simulate ac-
curately. Also, plants, branches, and fruits have deformation
dynamics which are challenging to simulate and design with
sufficient accuracy to support robot manipulation skills. To
complicate the situation further, natural elements are extremely
heterogeneous. To fully cover the range of variations among
different specimens it is necessary to design a great number of
models, or devise methods to generate them programmatically.
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II. THE SIMULATOR

Using simulation-based approaches in agriculture robotics
without introducing sim-to-real transfer issues is particularly
tricky. The most crucial factors to take into account selecting
the software are: rendering quality, physics simulation accu-
racy and ease of integration with other software (e.g., ROS).

Gazebo is usually the first choice for projects based on ROS
as it provides a wide array of functionalities through the ROS
messaging system, including control of the simulation execu-
tion, simulated controllers, and access to simulated sensors.

Regarding physics simulation, Gazebo supports four dif-
ferent engines: ODE [3||, Bullet Physics [4], DART [5], and
Simbody [|6]. This wide choice guarantees robustness and
flexibility, as it is possible to select the most suited engine for
each of the specific tasks in a project. Bullet Physics in particu-
lar achieves state-of-the-art performance and accuracy, reason
for which it is commonly used in Reinforcement Learning
research [7]] [8]. However, due to its now old integration within
Gazebo, newer features are not exploited (the Featherstone
solver is not being used).

Gazebo uses the OGRE rendering engine, its capabilities are
not on the level of state-of-the-art photorealistic engines such
as Unreal Engine, Unity or Nvidia Omniverse. Nonetheless, it
is still able to provide quite realistic renderings [9].

As mentioned, some components of Gazebo are starting to
show the age of its codebase. A rewrite of the software is
undergoing, named Gazebo Ignition. It promises to improve
rendering capabilities by using OGRE v2 instead of OGRE vl,
and also physics simulation quality will be enhanced with the
re-integration of Bullet Physics [|10] and DART [11]].

Potential alternatives to Gazebo are Webots [12], Cop-
peliaSim [[13]] (previously V-REP) or Unity. However, while
they may be better in specific aspects, Gazebo is still overall
more suited to the requirements of agricultural robotics. For
example Unity would provide higher quality rendering, but at
the expense of a less straightforward ROS integration. Webots
is on par with Gazebo for what concerns the rendering, but it
does not offer the same flexibility in the physics simulation,
and, also in this case, ROS integration is less obvious. Cop-
peliaSim offers physics simulation capabilities comparable to
those of Gazebo, but the rendering is more limited.

In future, other options will be viable. Most notably, Nvidia
is developing a simulator within its Isaac framework, Nvidia
Isaac Sim. Its visual rendering, based on Nvidia Omniverse and
ray tracing technology, will be of extremely high and photo-
realistic quality. Also, the accuracy of its physics simulation,
based on PhysX 5, will be state of the art.



III. AN EXAMPLE: ROBOTIC GRAPE VINE PRUNING

A task representative of the highlighted difficulties is the
winter pruning of grapevines, which is the center of an un-
dergoing project in our lab [14]. In wine-producing vineyards
grapevines require to be pruned during the winter and trimmed
in the summer to control the growth of the plant, the number
and position of new shoots, and the number and quality of the
grape clusters. It is a job that requires the work of numerous
skilled laborers for a limited period every year, consequently
the available workforce is scarce [15]]. Because of this, it has
great appeal for automation. However, experiments in the real
world are constrained by the short supply of vines and by the
narrow window of time in which tests can be performed [16].

To achieve an optimal balance between quality and quantity
of the grapes, it is important to choose carefully the branches
to be removed, based on criteria such as the width and
length of the branches, their distance from the main cordon or
the locations of the buds. This analysis requires high-fidelity
rendering and realistic models. Furthermore, pruning is a task
rich of contact interactions between the robot tool and the vine,
and the dynamics of the plant are particularly complex due
to the numerous intertwined and flexible branches. Realistic
simulation of these dynamics is crucial for learning and fine-
tuning robot manipulation skills. Even when not using learning
approaches, just a slight movement due to collisions between
robot and branches can lead to an incorrect cut if not taken
into account.

A. Sim2Real Setup for Grapevine Pruning

In our implementation a robot composed of a wheeled
mobile platform and a robot arm has to navigate in the
vineyard, locate the vines, identify spurs and pruning locations,
and proceed to cut the branches.

A simulated setup was created in Gazebo for testing the
solution, with a simple environment but detailed models for the
single vines. The vine models were designed in Blender, taking
images of real vines as a guide. To approximate the motion
of the vines, the base of the plant was actuated randomly on
three joints to induce translational and rotational motions.

The detection system for spurs and pruning regions has been
implemented employing a Faster R-CNN pipeline [17]. The
system was trained on a real-world dataset collected during
the winter in a non-pruned vineyard. This solution was able
to generalize to the simulation, allowing for simulated testing
of the system. The detection of the pruning points is performed
analyzing close-up images of the spurs and extracting graph-
morphometry information. The technique has been employed
to generate cutting poses in both simulation and real-world.

B. Limitations and potential solutions

Even though working in simulation has led to interesting
results in our project, the lack of realism in visual rendering
and physical simulation is a huge limiting factor. Designing
visually realistic vine models is extremely time-consuming,
even in a context like our own, where leaves are absent. And
even a carefully designed model may not represent correctly

(a) Vine model in 3ds Max

(b) Vineyard and robot in Unity

Fig. 1: Real and simulated grapevines

minute characteristics such as young and small buds. Even
more challenging is the modeling of the dynamics of the
plants, in particular their deformability. The simulation of
complex deformable objects is not yet a common and estab-
lished feature in simulators. Recent works tend to only treat
simple and small objects [[18] [[19]. A compromise is to insert
joints in the plant structure, but, if not by using a considerable
amount of joints, this does not lead to realistic results. An
approach like this can be extremely time-consuming at the
model design stage. Also, while approaches based on careful
hand-crafting of the models can lead to sufficient realism
for traditional methods based on optimal control or classical
computer vision, the accuracy of such simulation may not be
enough for learning-based methods.

All of these issues are further complicated by the absence
of a single simulation software capable of integrating state-of-
the-art rendering and physics simulation, together with a good
support for robotics applications. Gazebo is greatly integrated
within the ROS framework, can provide accurate physics
simulation and sufficiently good rendering. However, creating
visually realistic models for it can be challenging. Other
software, like Unity, can provide visual rendering of photo-
realistic quality, and recently there has been a push to include
accurate physics simulation methods [20] but integration into
robotics projects can be cumbersome. Still, preliminary trials
in creating visually realistic environments show the potential
of such software. Figure [I] shows such a test in which a static
vineyard environment was created.

IV. CONCLUSION AND DISCUSSION

In the field of agricultural robotics simulation is a neces-
sity. The seasonal constraints in this field, together with the
scarcity and the monetary value of testing plants, do not allow
extensive testing or training in the real world. High quality
simulation of visuals and dynamics is needed, but plants have
highly heterogeneous characteristics. Consequently there is
a necessity for a great number of very complex models, or
alternatively of procedurally generated ones. Currently, to our
knowledge, there is no simulation software capable of satisfy-
ing all of the requirements of this area of research while also
allowing straightforward integration with robotics frameworks.
There are promising projects like Gazebo Ignition, Nvidia
Isaac Sim or Unity, but they are not yet mature. Agriculture
robotics is an area of research that requires simulation, and
simulation software is not ready yet to support it effectively
without introducing sim-to-real transfer issues.
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