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Abstract—In this paper we tackle the problem of deformable
object manipulation through model-free visual reinforcement
learning (RL). In order to circumvent the sample inefficiency
of RL, we propose two key ideas that accelerate learning. First,
we propose an iterative pick-place action space that encodes
the conditional relationship between picking and placing on
deformable objects. The explicit structural encoding enables
faster learning under complex object dynamics. Second, instead
of jointly learning both the pick and the place locations, we
only explicitly learn the placing policy conditioned on random
pick points. Then, by selecting the pick point that has Maximal
Value under Placing (MVP), we obtain our picking policy. This
provides us with an informed picking policy during testing, while
using only random pick points during training. Experimentally,
this learning framework obtains an order of magnitude faster
learning compared to independent action-spaces on our suite of
deformable object manipulation tasks with visual RGB obser-
vations. Finally, using domain randomization, we transfer our
policies to a real PR2 robot for challenging cloth and rope
coverage tasks, and demonstrate significant improvements over
standard RL techniques on average coverage.

I. INTRODUCTION

Over the last few decades, we have seen tremendous
progress in robotic manipulation. From grasping objects in
clutter [56, 44, 31, 27, 12] to dexterous in-hand manipulation
of objects [1, 69], modern robotic algorithms have transformed
object manipulation. But much of this success has come at
the price of making a key assumption: rigidity of objects.
Most robot algorithms often require (implicitly or explicitly)
strict rigidity constraints on objects. But the objects we interact
with everyday, from the clothes we put on to shopping bags
we pack, are deformable. In fact, even ‘rigid’ objects deform
under different form factors (like a metal wire). Because of
this departure from the ‘rigid-body’ assumption, several real-
world applications of manipulation fail [20]. So why haven’t
we created equally powerful algorithms for deformable objects
yet?

Deformable object manipulation has been a long standing
problem [65, 15, 59, 32, 54], with two unique challenges.
First, in contrast with rigid objects, there is no obvious rep-
resentation of state. Consider the cloth manipulation problem
in Fig. 1(a), where the robot needs to flatten a cloth from any
start configuration. How do we track the shape of the cloth?
Should we use a raw point cloud, or fit a continuous function?
This lack of canonical state often limits state representations to
discrete approximations [2]. Second, the dynamics is complex
and non-linear [7]. Due to microscopic interactions in the
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Fig. 1: We look at the problem of deformable object manipulation,
where the robot needs to manipulate a deformable object, say the
blue cloth, into a desired goal location (green in (a)). Our method
learns an explicit placing policy (arrows in (b) and (c)), along with
an implicit picking policy. This method is evaluated on cloth (b)
and rope (c) tasks using our PR2 robot. The heatmaps represent
the distribution of the Q-value, where the Q-values over each pick
location are normalized to the range of 0 (blue) to 1 (red).

object, even simple looking objects can exhibit complex and
unpredictable behavior [43]. This makes it difficult to model
and perform traditional task and motion planning.

One of the recent breakthroughs in robotics has been the
development of model-free visual policy learning [26, 45, 1],
where robotic algorithms can reason about interactions directly
from raw sensory observations. This can alleviate the challenge
of state estimation for deformable objects [33], since we can
directly learn on images. Moreover, since these methods do not
require an explicit model of the object [29], they can overcome
the challenge of having complex deformable object dynamics.
But model-free learning has notoriously poor sample com-
plexity [6]. This has limited the application of learning to the
setting where human demonstrations are available [41, 33]. To



reduce the dependence on human demonstrators, Seita et al.
[55] in concurrent and independent work, has shown how ex-
pert state-based policies can provide simulated demonstrations
to learn cloth manipulation from visual observations.

In this work, we tackle the sample-complexity issue by
focusing on an often ignored aspect of learning: the action
space. Inspired by Howard and Bekey [16], Brooks [4], we
start by using an iterative pick-place action space, where the
robot can decide which point to grasp (or pick) and to which
point it should drop (or place). But how should one learn
with this action space? One option is to directly output both
the pick point and place location for the deformable object.
But the optimal placing location is heavily correlated with
picking location, i.e. where you place depends heavily on what
point you pick. This conditional structure makes it difficult to
simultaneously learn without modeling the action space.

To solve this, we propose a conditional action space, where
the output of the picking policy is fed as input into the placing
policy. This type of action space is inspired by recent work
in auto-regressive output spaces in image generation [64],
imitation learning [41], and grasping [62]. However in the
context of model-free RL, this leads us to a second prob-
lem: the placing policy is constrained by the picking policy.
When learning starts, the picking policy often collapses into
a suboptimal restrictive set of pick points. This inhibits the
exploration of the placing policy, since the picking points
it takes as input are only from a restrictive set, and results
in a suboptimal placing policy. Now, since the rewards for
picking come after the placing is executed, the picking policy
receives poor rewards and results in inefficient learning. This
illustrates the chicken and egg problem with conditional action
spaces. Learning a good picking strategy involves having a
good placing strategy, while learning a good placing strategy
involves having a good picking strategy.

To break this chicken and egg loop, we learn the placing
strategy independent of the picking strategy. This allows us to
both learn the placing policy efficiently, and use the learned
placing value approximator [29] to inform the picking policy.
More concretely, since the value of the placing policy is
conditioned on the pick point, we can find the pick point
that maximizes the value. We call this picking policy Max-
imum Value of Placing (MVP). During training, the placing
policy is trained with a random picking policy. However,
during testing, the MVP picking policy is used. Through
this, we observe a significant speedup in convergence on
three difficult deformable object manipulation tasks on rope
and cloth objects. Finally, we demonstrate how this policy
can be transferred from a simulator to a real robot using
simple domain randomization without any additional real-
world training or human demonstrations. Videos of our PR2
robot performing deformable object manipulation along with
our code can be accessed on the project website: https://sites.
google.com/view/alternating-pick-and-place. Interestingly, our
policies are able to generalize to a variety of starting states of
both cloth and rope previously unseen in training.

In summary, we present three contributions in this paper: (a)

we propose a novel learning algorithm for picking based on
the maximal value of placing; (b) we show that the conditional
action space formulation significantly accelerates the learning
for deformable object manipulation; and (c) we demonstrate
transfer to real-robot cloth and rope manipulation using our
proposed formulation.

II. RELATED WORK

A. Deformable Object Manipulation

Robotic manipulation of deformable objects has had a rich
history that has spanned different fields from surgical robotics
to industrial manipulation. For a more detailed survey, we refer
the reader to Khalil and Payeur [23], Henrich and Wörn [15].

Motion planning has been a popular approach to tackle this
problem, where several works combine deformable object sim-
ulations with efficient planning [19]. Early work [49, 66, 39]
focused on using planning for linearly deformable objects
like ropes. Rodriguez et al. [47] developed methods for fully
deformable simulation environments, while Frank et al. [9]
created methods for faster planning with deformable environ-
ments. One of the challenges of planning with deformable
objects is the large degrees of freedom and hence large
configuration space involved when planning. This, coupled
with the complex dynamics [7], has prompted work in using
high-level planners or demonstrations and local controllers to
follow the plans.

Instead of planning on the full complex dynamics, we can
plan on simpler approximations, but use local controllers to
handle the actual complex dynamics. One way to use local
controllers is model-based servoing [57, 65], where the end-
effector is locally controlled to a given goal location instead of
explicit planning. However, since the controllers are optimized
over simpler dynamics, they often get stuck in local minima
with more complex dynamics [36]. To solve this model-
based dependency, Berenson [2], McConachie and Berenson
[35], Navarro-Alarcon et al. [42] have looked at Jacobian ap-
proximated controllers that do not need explicit models, while
Jia et al. [18], Hu et al. [17] have looked at learning-based
techniques for servoing. However, since the controllers are still
local in nature, they are still susceptible to reaching globally
suboptimal policies. To address this, McConachie et al. [36]
interleaves planning along with local controllers. Although this
produces better behavior, transferring it to a robot involves
solving the difficult state-estimation problem [51, 52]. Instead
of a two step planner and local controller, we propose to
directly use model-free visual learning, which should alleviate
the state-estimation problem along with working with the true
complex dynamics of the manipulated objects.

B. Reinforcement Learning for Manipulation

Reinforcement Learning (RL) has made significant progress
in many areas including robotics. RL has enabled robots
to handle unstructured perception such as visual inputs and
reason about actions directly from raw observations [37],
which can be desirable in many robotic tasks. RL from vision
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has been shown to solve manipulation problems such as in-
hand block manipulation [1, 46], object pushing [8], and
valve-rotating with a three-fingered hand [14]. However, these
algorithms have not yet seen wide applicability to deformable
object manipulation. This is primarily due to learning being
inefficient with complex dynamics [6], which we address in
this work.

Over the last few years, deformable object manipulation
has also been studied in reinforcement learning [41, 25, 33,
67, 55]. However, many of these works [25, 33] require expert
demonstrations to guide learning for cloth manipulation. These
expert demonstrations can also be used to learn wire threading
[34, 50]. In concurrent work, Seita et al. [55] show that instead
of human demonstrators, a simulated demonstrator using state
information can be used to obtain demonstrations. Other works
like Nair et al. [41] that do not need demonstrations for
training require them at test time. Similarly, Wang et al.
[67] do not use demonstration, but do require self-supervised
exploration data at training time. We note that since using our
conditional action spaces and MVP technique can be applied
to any actor-critic algorithm, it is complementary to most
methods that learn from expert demonstrations.

III. BACKGROUND

Before we describe our learning framework, we briefly
discuss relevant background on reinforcement learning and
off-policy learning. For a more in-depth survey, we refer the
reader to Sutton et al. [60], Kaelbling et al. [21].

A. Reinforcement Learning

We consider a continuous Markov Decision Process (MDP),
represented by the tuple (S,O,A,P, r, γ, s0), with continuous
state and action space, S andA, and a partial observation space
O. P : S ×A× S→[0,∞) defines the transition probability
of the next state st+1 given the current state-action pair
(st, at). For each transition, the environment generates a
reward r : S ×A → R, with future reward discounted by γ.

Starting from an initial state s0 sampled from distribution
S , the agent takes actions according to policy π(at|st) and
receives reward rt = r(st, at) at every timestep t. The
next state st+1 is sampled from the transition distribution
P(st+1|st, at). The objective in reinforcement learning is to
learn a policy that maximizes the expected sum of discounted
rewards

∑
t E(st,at)∼ρπ(st,at)[γ

tr(st, at)]. In the case of a
partially observable model, the agent receives observations ot
and learns π(at|ot).

B. Off Policy Learning

On-policy reinforcement learning [53, 22, 68] iterates
between data collection and policy updates, hence requiring
new on-policy data per iteration which tends to be expensive
to obtain. On the other hand, off-policy reinforcement learning
retains past experiences in a replay buffer and is able to re-
use past samples. Thus, in practice, off-policy algorithms have
achieved significantly better sample efficiency [14, 24]. Off-
policy learning can be divided into three main categories:

model-based RL, Actor-Critic (AC), and Q learning. In model-
based RL, we learn the dynamics of the system. In the AC
framework, we learn both the policy (actor) and value function
(critic). Finally, in Q-learning we often learn only the value
function, and choose actions that maximize it.

In this work, we choose the actor-critic framework due to its
stability, data-efficiency, and suitability for continuous control.
Recent state-of-the-art actor-critic algorithms such as Twin
Delayed DDPG (TD3) [10] and Soft-Actor-Critic (SAC) [13]
show better performance than prior off-policy algorithms such
Deep Deterministic Policy Gradient (DDPG) [28] and Asyn-
chronous Advantage Actor-Critic (A3C) [38] due to variance
reduction methods in TD3 by using a second critic network to
reduce over-estimation of the value function and an additional
entropy term in SAC to encourage exploration. In this work,
we use SAC since its empirical performance surpasses TD3
(and other off-policy algorithms) on most RL benchmark
environments [13]. However, our method is not tied to SAC
and can work with any off-policy learning algorithm.

C. Soft Actor Critic

For our experiments, we use SAC [14], an entropy regu-
larized off-policy RL algorithm, as our base RL algorithm.
This regularization allows for a trade-off between the entropy
of the policy and its expected return. Intuitively, increasing
the entropy makes the policy more exploratory, which helps
prevent convergence to poor solutions.

SAC learns a parameterized Q-function Qθ(s, a) and policy
πφ(a|s), and an entropy-regularization term α. Qθ is learned
by minimizing a bootstrapped estimate of the Q-value using a
target Q-value network with an included entropy term. πφ is
learned by minimizing the expected KL-divergence between
φφ(·|st) and exp{Qθ(st,·)}

Zθ(st)
, where Zθ(st) is a normalization

constant. Lastly, the entropy regularization term α is learned
by iteratively adjusting to fit a target entropy. We choose to
use SAC over existing off-policy methods since it has shown
consistently better results in many popular domains.

IV. APPROACH

We now describe our learning framework for efficient de-
formable object manipulation. We start by the pick and place
problem. Following this, we discuss our algorithm.

A. Deformable Object Manipulation as a Pick and Place
Problem

We look at a more amenable action space while retaining the
expressivity of the general action space: pick and place. The
pick and place action space has had a rich history in planning
with rigid objects [4, 30]. Here, the action space is the location
to pick (or grasp) the object atpick and the location to place
(or drop) the object atplace. This operation is done at every
step t, but we will drop the superscript for ease of reading.
With rigid objects, the whole object hence moves according
apick → aplace. However, for a deformable object, only the
point corresponding to apick on the object moves to aplace,
while the other points move according to the kinematics and
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Fig. 2: In direct policy learning (a), the policy directly outputs both the pick and the place location. While in conditional policy learning, the
composite action space is broken down into a separate picking and placing policy, where the placing policy takes the output of the picking
policy as input.

dynamics of the deformable object [41]. Empirically, since in
each action the robot picks and places a part of the deformable
object, there is significant motion in the object, which means
that the robot gets a more informative reward signal after each
action. Also note that this setting allows for multiple pick-and-
place operations that are necessary for tasks such as spreading
out a scrunched up piece of cloth.

B. Learning with Composite Action Spaces

The straightforward approach to learning with a pick-place
action space is to learn a policy πjoint that directly outputs
the optimal locations to pick and to place [apick, aplace], i.e.
πjoint ≡ p(apick|o) · p(aplace|o) where o is the observation of
the deformable object (Fig. 2(a)). However, this approach fails
to capture the underlying composite and conditional nature of
the action space, where the location to place aplace is strongly
dependent on the pick point apick.

One way to learn with conditional output spaces is to
explicitly factor the output space during learning. This has
provided benefits in several other learning problems from
generating images [64] to predicting large dimensional robotic
actions [40, 62]. Hence instead of learning the joint policy, we
factor the policy as:

πfactor ≡ πpick(apick|o) · πplace(aplace|o, apick) (1)

This factorization will allow the policy to reason about
the conditional dependence of placing on picking (Fig. 2(b)).
However, in the context of RL, we face another challenge:
action credit assignment. Using RL, the reward for a specific
behavior comes through the cumulative discounted reward at
the end of an episode. This results in the temporal credit
assignment problem where attributing the reward to a specific
action is difficult. With our factored action spaces, we now
have an additional credit assignment problem on the different
factors of the action space. This means that if an action
receives high reward, we do not know if it is due to πpick
or πplace. Due to this, training πfactor jointly is inefficient
and often leads to the policy selecting a suboptimal pick
location. This suboptimal πpick then does not allow πplace
to learn, since πplace(aplace|o, apick) only sees suboptimal

picking locations apick during early parts of training. Thus,
this leads to a mode collapse as shown in Sec. V-D.

To overcome the action credit assignment problem, we
propose a two-stage learning scheme. Here the key insight
is that training a placing policy can be done given a full-
support picking policy and the picking policy can be obtained
from the placing policy by accessing the Value approximator
for placing. Algorithmically, this is done by first training
πplace conditioned on picking actions from the uniform ran-
dom distribution Upick. Using SAC, we train and obtain
πplace(aplace|o, apick), s.t. apick ∼ Upick as well as the place
value approximator V πplaceplace (o, apick). Since the value is also
conditioned on pick point apick, we can use this to obtain our
picking policy as:

πpick ≡ argmax
apick

V
πplace
place (o, apick) (2)

We call this picking policy: Maximum Value under Placing
(MVP). The argmax is computed by searching over all
available pick location from the image of the object being
manipulated. MVP allows us get an informed picking policy
without having to explicitly train for picking. This makes
training efficient for off-policy learning with conditional action
spaces especially in the context of deformable object manip-
ulation.

V. EXPERIMENTAL EVALUATION

In this section we analyze our method MVP across a suite
of simulations and then demonstrate real-world deformable
object manipulation using our learned policies.

A. Cloth Manipulation in Simulation

Most current RL environments like OpenAI Gym [3] and
DM Control [61], offer a variety of rigid body manipulation
tasks. However, they do not have environments for deformable
objects. Therefore, for consistent analysis, we build our own
simulated environments for deformable objects using the DM
Control API. To simulate deformable objects, we use com-
posite objects from MuJoCo 2.0 [63]. This allows us to create
and render complex deformable objects like cloths and ropes.
Using MVP, we train policies both on state (locations of
the composite objects) and image observations (64 × 64 × 3
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Fig. 3: Learning comparisons between baselines and our method on the three deformable object manipulation environments with state-based
training in simulation. The dotted black line is computed by evaluating MVP on the final learned ‘learned placing with uniform pick’ policy.
Each experiment was run on 4 random seeds.

Image based cloth spreading

random policy independent conditional MVP (ours)

Image based rope spreading

learned placing with uniform pick

Fig. 4: Learning comparisons between baselines and our method on two deformable object manipulation environments with image-based
training in simulation. Note that we do not include the cloth-simplified environment here since image-based transfer to real robot would
involve corner detection. The dotted black line is computed by evaluating MVP on the final learned ‘learned placing with uniform pick’
policy. Each experiment was run on 3 random seeds.

RGB). For image-based experiments, we uniformly randomly
select a pick point on a binary segmentation of the cloth or
rope in order to guarantee a pick point on the corresponding
object. Images are segmented using simple color channel
thresholding. The details for the three environments we use
are as follows:

1. Rope : The goal is to stretch the rope (simulated as a 25
joint composite) horizontally straight in the center of the table.
The action space is divided into two parts as apick and aplace.
apick is the two dimension pick point on the rope, and aplace
is the relative distance to move and place the rope. All other
parts of the rope move based on the simulator dynamics after
each action is applied. We constrain the relative distance to
move in a small radius around the pick point due to unstable
simulations for larger movements. The reward for this task is
computed from the segmentation of the rope in RGB images
as:

reward =

H∑

i=1

e0.5×|i−32|
W∑

j=1

si,j , (3)

where i is the row number of the image, j is the column
number, si,j is the binary segmentation at pixel location (i, j),
and W,H correspond to height and width. Hence for a 64×64
image the reward encourages the rope to be in the center
row (row number 32) with an exponential penalty on rows
further from the center. At the start of each episode, the rope
is initialized by applying a random action for the first 50
timesteps.

2. Cloth-Simplified : The cloth consists of an 81 joint
composite that is a 9 × 9 grid. The robot needs to pick the
corner joint of the cloth and move that to the target place.
The action space is similar to the rope environment except the
picking location can only be one of the four corners. In this
environment, the goal is to flatten the cloth in the middle of
the table. Our reward function is the intersection of the binary
mask of the cloth with the goal cloth configuration.

3. Cloth : In contrast to the Cloth-Simplified environment
that can only pick one of the 4 corners, Cloth allows picking
any point in the pixel of cloth (if it is trained with image
observation) or any composite particle (if state observation is
used). The reward used is the same as in Cloth-Simplified.
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Fig. 5: We demonstrate deformable object manipulation in the simulated environments using our learned MVP policy. In the top half, we
see the policy successfully horizontally straightens and centers a rope in the top. And in the bottom half, we see our method successfully
spreading out a cloth from multiple starting states. Each image is about 5 actions apart for rope experiments, and 10 actions for cloth
experiments.

For both the Cloth and Cloth-Simplified environments, the
cloth is initialized by applying a random action for the first
130 timesteps of each episode. In MuJoCo, the skin of the
cloth can be simulated by uploading an image taken of a real
cloth texture. In the domain randomization experiments, we
randomize the cloth by switching out different textures.

B. Learning Methods for Comparison

To understand the significance of our algorithm, we compare
the following learning methods: random, independent, condi-
tional, learned placing with uniform pick, and MVP (ours) as
described below.
• Random: We sample pick actions uniformly over avail-

able pick locations and place actions uniformly over the
action space of the robot.

• Independent / Joint: We use a joint factorization of
p(apick, aplace|o) by simultaneously outputting the apick
and aplace. Alternatively, we label it as Independent to
distinguish it from the Conditional baseline.

• Conditional: We first choose a pick location, and then
choose a place vector distance given the pick location,
modeled as p(apick|o)× p(aplace|apick, o).

• Learned Placing with Uniform Pick: We use the
conditional distribution p(aplace|apick, o), where apick is
uniformly sampled from available pick locations.

• MVP (ours): We use the trained learned placing with

uniform pick policy and choose apick by maximizing over
the learned Q-function.

Our experimental results for various model architectures on
the rope and cloth environments are shown in Fig. 3 and
Fig. 4. We trained the Independent and Conditional baselines
using a modified environment, where an extra positive reward
is given for successfully outputting a pick location on the cloth
or rope. This is to allow a more fair comparison with the
Random, Learned Placing with Uniform Pick, and MVP (ours)
policies which have prior access to the image segmentations.

C. Training Details

For the training in the simulation, we use SAC [14] as
our off-policy algorithm and make a few modifications on the
rlpyt code-base [58]. For state-based experiments, we use an
MLP with 2 hidden layers of 256 units each; approximately
150k parameters. For image-based experiments, we use a CNN
with 3 convolutional layers with channel sizes 64, 64, and 4,
accordingly, and each with a kernel size of 3 and a stride of
2. This is followed by with 2 fully connected hidden layers
of 256 units each. In total approximately 200k parameters
are learned. For all models, we repeat the pick information
50 times before concatenating with the state observations
or flattened image embeddings so that the pick information
and the observation embeddings are weighted equally, which
improves performance. The horizon for Rope is 200 and 120
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Fig. 6: Using MVP for learning the policy along with domain randomization for simulation to real transfer, we demonstrate deformable
object manipulation on a real robot for a rope (top) and a cloth (bottom). In both examples, the task is to spread out the object to reach
the target spread out configuration in the middle of the table (left) for two different start locations (in red). For rope spreading, each frame
corresponds to one pick-place action taken by our PR2 robot (Fig. 1(a)), while for cloth spreading each frame corresponds to 10 actions on
our robot.

for both Cloth environments. The minimum replay pool size
is 2000 for Rope and 1200 for the Cloth environments. The
image size used for all environments is 64×64×3. We perform
parallel environment sampling to speed-up overall training by
3−5 times. For both rope and cloth experiments, the total
compute time on one TitanX GPU and 4 CPU cores is roughly
4-6 hours. In the case of rope experiments, a reasonable policy
can be obtained in one sixth of the training time, and about
a half of the training time for cloth experiments. All of our
training code, baselines, and simulation environments will be
publicly released.

D. Does conditional pick-place learning help?

To understand the effects of our learning technique, we
compare our learned placing with uniform pick technique with
the independent representation in Fig. 3. We can see that using
our proposed method shows improvement in learning speed for
state-based cloth experiments, and image-based experiments
in general. The state-based rope experiments do not show
much of a difference due to the inherent simplicity of the
tasks. Our method shows significantly higher rewards in the
cloth simplified environment, and learns about 2X faster in
the harder cloth environment. We also note that the inde-
pendent and conditional baselines perform better on the full
state-based cloth environment compared to when constraining
the task to four corner pick points (Cloth-Simplified). This

most likely occurs since the Cloth-Simplifed task structures
its pick action as 4 discrete locations, which increases the
likelihood of mode collapse on a single corner compared
to when using a continuous pick representation for the full
Cloth environment. For image-based experiments, the baseline
methods do no better than random while our method gives
an order of magnitude (5-10X) higher performance for reward
reached. The independent and conditional factored policies for
image-based cloth spreading end up performing worse than
random, suggesting mode collapse that commonly occurs in
difficult optimization problems [11]. Note that to strengthen
the baselines, we add additional rewards to bias the pick
points on the cloth; However, this still does not significantly
improve performance for the challenging image based tasks.
This demonstrates that conditional learning indeed speeds up
learning for deformable object manipulation especially when
the observation is an image.

E. Does setting the picking policy based on MVP help?

One of the key contributions of this work is to use the
placing value to inform the picking policy (Eq. 2) without
explicitly training the picking policy. As we see in both state-
based (Fig. 3) and image-based case (Fig. 4) training with
MVP gives consistently better performance. Even when our
conditional policies with uniform pick location fall below
the baselines as seen in Cloth (State) and Rope (State),
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Fig. 7: Learning comparisons between different forms of domain
randomization (DR) on cloth-spreading trained with MVP. This is
evaluated in simulation across 5 random seeds and shaded with ± 1
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Fig. 8: Examples of domain randomization applied in the rope and
cloth environments.

using MVP significantly improves the performance. Note that
although MVP brings relatively smaller boosts in performance
compared to the gains brought by the learned placing with
uniform pick method, we observe that the learned placing with
uniform pick policy already achieves a high success rate on
completing the task, and even a small boost in performance
is visually substantial when running evaluations in simulation
and on our real robot.

F. How do we transfer our policies to a real robot?

To transfer our policies to the real-robot, we use domain
randomization (DR) [62, 45, 48] in the simulator along with
using images of real cloths. Randomization is performed on
visual parameters (lighting and textures) as well physics (mass
and joint friction) of the cloth. Examples of randomized
observations can be seen in Fig. 8. Additionally, in simulation
evaluation, we notice no degradation in performance due to
DR while training using MVP as seen in Fig. 7. Physics
randomization most likely had little-to-no benefit (compared
to visual randomization) to the learning process due to the fact
that the simulator itself is already a little noisy.

In order to perform actions on our PR2 robot, we first
calibrate pixel-space actions with robot actions. This is done
by collecting 4-5 points mapping between robot x, y coor-
dinates to image row, column pixel locations, and fitting a
simple linear map. Next, we capture RGB images from a head-
mounted camera on our PR2 robot(Fig. 1(a)) and input the

image into our policy learned in the simulator. Since apick
and aplace are both defined as points on the image, we can
easily command the robot to perform pick-place operations on
the deformable object placed on the green table by planning
with Moveit! [5].

G. Evaluation on the real robot
We evaluate our policy on the rope-spread and cloth-spread

experiments. As seen in Fig. 6, policies trained using MVP
are successfully able to complete both spreading tasks. For
our cloth spreading experiment, we also note that due to
domain randomization, a single policy can spread cloths of
different colors. For quantitative evaluations, we select 4 start
configurations for the cloth and the rope and compare with
various baselines (Table I) on the spread coverage metric.
For the rope task, we run the policies for 20 steps, while
for the much harder cloth task we run policies for 150 steps.
The large gap between MVP trained policies and independent
policies supports our hypothesis that the conditional structure
is crucial for learning deformable object manipulation. Robot
execution videos can be accessed from the video submission.
We observe that, compared to our simulation policy which
solves the manipulation tasks in 20-30 actions, the robot
sometimes makes unnecessary manipulation actions. This may
be attributed to a combination of a sim-to-real gap, and
deficiencies of the robot (e.g. the robot would miss its pick, or
its thick gripper would pick up both layers of a folded cloth).

Domains Random
policy

Conditional
Pick-Place

Independent / Joint
policy

MVP
(ours)

Rope 0.34 0.16 0.21 0.48
Cloth 0.59 0.34 0.32 0.84

TABLE I: Average goal area intersection coverage for rope and cloth
spreading tasks on the PR2 robot.

VI. CONCLUSION AND FUTURE WORK

We have proposed a conditional learning approach for learn-
ing to manipulating deformable objects. We have shown this
significantly improves sample complexity. To our knowledge,
this is the first work that trains RL from scratch for deformable
object manipulation and demonstrates it on real robot. We
believe this work can open up many exciting avenues for
deformable object manipulation from bubble wrapping a rigid
object to folding a T-shirt, which pose additional challenges in
specifying a reward function and handling partial observability.
Additionally, since our technique only assumes an actor-
critic algorithm, we believe it can be combined with existing
learning from demonstration based techniques to obtain further
improvements in performance.
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