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Fig. 1: Example trajectories using our contrastive forward model for rope and cloth manipulation. The top two rows show rope manipulation
from different start states to different goal states, while the bottom two rows show cloth manipulation using different colored cloths. Note
that in the last row, the robot is manipulating a white cloth, but our method is able to still use a blue cloth as the goal image.

Abstract—Using visual model-based learning for deformable
object manipulation is challenging due to difficulties in learning
plannable visual representations along with complex dynamic
models. In this work, we propose a new learning framework that
jointly optimizes both the visual representation model and the
dynamics model using contrastive estimation. Using simulation
data collected by randomly perturbing deformable objects on
a table, we learn latent dynamics models for these objects in
an offline fashion. Then, using the learned models, we use
simple model-based planning to solve challenging deformable
object manipulation tasks such as spreading ropes and cloths.
Experimentally, we show substantial improvements in perfor-
mance over standard model-based learning techniques across
our rope and cloth manipulation suite. Finally, we transfer our
visual manipulation policies trained on data purely collected in
simulation to a real PR2 robot through domain randomization.

I. INTRODUCTION

Robotic manipulation of rigid objects has received sig-
nificant interest over the last few decades, from grasping
novel objects in clutter [28, 25, 47, 39, 12] to dexterous
in-hand manipulation [22, 2, 59]. However, the objects we
interact within our daily lives are not always rigid. From
putting on clothes to packing a shopping bag, we constantly
need to manipulate objects that deform. Even seemingly rigid
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objects like metal wires significantly deform during everyday
interactions. As a result, there has been a growing interest
in algorithms that can tackle deformable object manipulation
[54, 15, 42, 43, 45, 58, 46, 29, 50].

Deformable object manipulation presents two key chal-
lenges for robots. First, unlike rigid objects, there is no direct
representation of the state. Consider the manipulation problem
in Figure 1, where the robot needs to straighten a rope from
a start configuration to any goal configuration. How does one
track the shape of the rope? This lack of a canonical state often
limits representations to discrete approximations [3]. Second,
the dynamics of deformable objects are complex and non-
linear [9]. Due to microscopic interactions within the object,
even simple objects can exhibit complex and unpredictable
behavior [38], which makes modeling and performing tradi-
tional task and motion planning with such deformable objects
difficult.

One class of techniques that circumvents the challenges
in state estimation and dynamics modeling is image-based
model-free learning [13, 44, 26]. For instance, Matas et al.
[30], Seita et al. [46], Wu et al. [58] use model-free methods
in simulation for several difficult cloth manipulation tasks.
However, without expert demonstrations, model-free learning
is notoriously inefficient [7], and often needs millions of
samples to learn from. This challenge is further exacerbated
in the multi-task learning framework, where the robot needs



to learn to reach multiple goals.
Model-based techniques, on the other hand, have shown

promise in sample-efficient learning [57, 4, 35]. However,
using such model-based learning techniques for deformable
objects necessitates tackling the challenges of state repre-
sentation and dynamics modeling head-on. So how does
one learn models given high-dimensional observations and
complex underlying dynamics? Some approaches take a direct
approach to learning complex dynamics models through pixel-
space [19, 8]. Another approach, by Agrawal et al. [1], Nair
et al. [36], learns forward dynamics models in conjunction
with inverse dynamic models for manipulating deformable
objects. However, during robotic execution, only the inverse
model is used. Other model-based approaches such as Wang
et al. [56] train Causal InfoGANs [23, 6] to both extract visual
representations and forward models, and use the learned for-
ward models for planning. However, these techniques are not
robust due to training instabilities associated with GANs [49].

In this paper, we introduce a new visual model-based
framework that uses contrastive optimization to jointly learn
both the underlying visual latent representations and the dy-
namics models for deformable objects. We hypothesize that
using contrastive methods for model-based learning achieves
better generalization and latent space structure do to its
inherent information maximization objective. We re-frame
the objective introduced in contrastive predictive coding [37]
to allow for learning effective model dynamics and latent
representations. Once the latent models for representations and
dynamics are learned across offline random interactions, we
use standard model predictive control (MPC) with one-step
predictions to manipulate deformable objects to desired visual
goal configurations. Given this controller, we empirically
demonstrate substantial improvements over standard model-
based learning approaches across multi-goal rope and cloth
spreading manipulation tasks. Videos of our real robot runs
and reference code can be found on the project website:
https://sites.google.com/view/contrastive-predictive-model.

In summary, we present three key contributions in this pa-
per: (a) We propose a contrastive predictive modeling approach
to model learning that is compatible with model predictive
control. To our knowledge, this is the first use of contrastive
estimation for model-based learning. (b) We demonstrate
substantial improvements in multi-task deformable object ma-
nipulation over other model learning approaches. (c) We
show the applicability of our method to real robot rope and
cloth manipulation tasks by using sim-to-real transfer without
additional real-world training data.

II. RELATED WORK

A. Deformable Object Manipulation

There has been a substantial amount of prior work in the
area of robotic manipulation of deformable objects. A detailed
survey of past work can be found in Khalil and Payeur [20],
Henrich and Wörn [15].

A standard approach to tackling deformable object manip-
ulation is to use deformable object simulations with planning

methods [18]. Past work in this domain has focused on
simple linear deformable objects [41, 55, 34], creating better
simulations [40], and faster planning [11]. However, the large
number of states for deformable objects makes it difficult to
plan correctly while being computationally efficient.

Instead of directly planning on the full dynamics, some prior
research has focused on planning on simpler approximations,
by using local controllers to handle the actual complex dynam-
ics. One approach to using local controllers is model-based
servoing [48, 54], where the end-effector is controlled to a
goal location instead of explicit planning. However, since the
controller is optimized over simple dynamics, it often gets
stuck in local minima with more complex dynamics [32].
To solve this, several works [3, 31] have proposed Jacobian
controllers that do not need explicit models, while [17, 16]
have proposed learning-based techniques for servoing. We note
that our proposed work on learning latent dynamics models
is compatible with several of these model-based optimization
techniques.

B. Contrastive Prediction

Learning good representations remains a difficult challenge
in deformable object manipulation. There has been a large
amount of prior work on contrastive predictive methods to
learn better representations of data. Word2Vec [33] optimizes
a contrastive loss to demonstrate semantic and syntactic struc-
ture in the learned latent space for words. Oord et al. [37]
shows that it is possible to learn high-level representations of
images, video, and speech data by employing a large number
of negative samples. Tian et al. [52] learns high-level repre-
sentations by encouraging different views of scenes to be em-
bedded close to one another, and further from others through
a similarly framed contrastive loss. Recently, SimCLR [5],
another contrastive learning framework, achieved state-of-the-
art results in self-supervised learning representations, bridging
the gap with supervised learning.

III. CONTRASTIVE FORWARD MODELING (CFM)

In this section, we describe our proposed framework for
learning deformable object manipulation: Contrastive Forward
Modeling (CFM). We begin by discussing formalism for
predictive modeling and contrastive learning. Following that,
we discuss our method for learning contrastive predictive
models. See Figure 2 for an overview of our training scheme.

A. Dynamic Predictive Models

For our problem setting, we consider a fully observable
environment with observations o ∈ O, actions a ∈ A, and
deterministic transition dynamics f(ot, at) = ot+1. We would
like to learn a predictive model f̂(ot, at) ≈ ot+1 to approxi-
mate the observation of the next timestep. This can be done
by directly learning a visual model through pixel space with
regression over observation-action-observation tuples [10, 19].
Once we have successfully learned a predictive model, it
is natural to use it for planning to reach different desired
goal states, for example, different configurations of a rope or

https://sites.google.com/view/contrastive-predictive-model


Fig. 2: Overview of our contrastive forward model. Training data
consists of (image, next image, action) tuples and we learn the
encoder and forward model jointly. The contrastive loss objective
brings the positive embedding pairs closer together and the negative
embeddings further away.

cloth. However, planning directly through pixel space can be
difficult, as pixel-value comparisons between images usually
do not necessarily correlate well with their true distances.
For example, consider an environment with a ball, where the
task is to learn a policy that pushes the ball to the center.
If the ball is far from the center, then all predicted next
actions using a visual forward model would be equidistant
from the goal ball-in-center image when comparing pixels
values since there would be no image overlap. Therefore,
we consider the framework of planning with in a learned
latent space by encoding observations. We learn an encoder
gθ(ot) = zt to embed our observations into a latent space,
coupled with a predictive model in latent space between z’s,
where our learned predictive model is now formulated as
f̂(zt, at) ≈ zt+1. In this work, we propose to learn the latent
space using a contrastive learning method.

B. Contrastive Models

In our contrastive learning framework, we jointly learn an
encoder gθ(ot) = zt and a forward model fφ(zt, at) ≈ zt+1.
We use the InfoNCE contrastive loss described by Oord et al.
[37].

L = −ED

[
log

h(ẑt+1, zt+1)∑k
i=1 h(ẑt+1, z̃i)

]
(1)

where h is some similarity function between the computed
embeddings from the encoder. The z̃i represents negative
samples, which are incorrect embeddings of the next state,
and we use k such negative samples in our loss. The mo-
tivation behind this learning objective lies with maximizing
mutual information between the predicted encodings and their
respective positive samples. Within the embedding space, this

results in the positive sample pairs being aligned together but
the negative samples pushed further apart, as seen in Figure 2.
Since we are jointly learning a forward model that seeks to
minimize ‖fφ(zt, at)− zt+1‖2, we use the similarity function:

h(z1, z2) = exp(−‖z1 − z2‖2) (2)

where the norm is a `2-norm. After learning the encoder and
dynamics model, we plan using a simple version of Model
Predictive Control (MPC), where we sample several actions,
run them through the forward model from the current zt, and
choose the action at that produces ẑt+1 closest (in `2-distance)
to the goal embedding.

IV. EXPERIMENTAL EVALUATIONS

In this section, we experimentally evaluate our method in
various rope and cloth manipulation settings, both in simula-
tion and in the real world. Our experiments seek to address
the following questions:
• Do contrastive learning methods learn better latent spaces

and forward models for planning in deformable object
manipulation tasks?

• What aspects of our contrastive learning methods con-
tribute the most to performance?

• Can we successfully manipulate deformable objects on a
real-world robot?

A. Environments and Tasks

To simulate deformable objects such as cloth and rope,
we used the Deep Mind Control [51] platform with MuJoCo
2.0 [53]. We use an overhead camera that renders 64× 64× 3
RGB images as input observations for training our method.

We design the following tasks in simulation:
1. Rope: The rope is represented by 25 geoms in simulation

with a four-dimensional action space: the first 2 are the pixel
pick point on the rope, and the last 2 are the x, y delta direction
to perturb the rope. At the start of each episode, the rope’s state
is randomly initialized by applying 120 random actions.

2. Cloth: The cloth is represented by a 9×9 grid of geoms
in simulation with a five-dimensional action space: the first 2
are the pixel pick point on the cloth, and the last 3 are the
x, y, z delta direction to perturb the cloth. At the start of each
episode, the cloth’s state is randomly initialized by applying
50 random actions. In MuJoCo 2.0, the skin of the cloth can
be changed by using images taken of a real cloth.

For both rope and cloth environments, we evaluate our
method by planning to a desired goal state image and com-
puting the sum of the pairwise geom distances between the
achieved and true goal states. We observe that taking an
average of 1000 trials suffices to maintain high-confidence
evaluation estimates.

B. Data Collection

Since collecting real-world data on robots is expensive, our
method seeks to address this problem by collecting randomly
perturbed rope and cloth data in simulation. Using random
perturbations allows for a diverse set of deformable objects



Start Final

Goal

Joint 
Dynamics

Autoencoder

PlaNet

Visual 
Forward

Random

CFM (Ours)

Fig. 3: Trajectories for each of the baselines within the simulator, all starting from the same start state and having the same end goal of
a horizontal line. Each trajectory was run for 20 actions. Note that our method (CFM) reaches the goal state significantly faster than the
baselines.

TABLE I: Quantitative comparisons between different model-based learning methods on rope and cloth manipulation tasks. The metric is
the sum of pairwise geom distances between the final observation and goal state, where lower distance is more accurate.

Rope Cloth
Horizontal Vertical 45◦ 135◦ Random Flat Random

Random Policy 4.75 4.93 4.80 4.87 5.73 7.98 10.12
Autoencoder 1.72± 0.31 3.24± 1.28 2.11± 0.51 2.49± 0.64 4.308± 1.16 3.24± 0.29 4.82± 0.0

PlaNet 1.81± 0.13 3.36± 0.78 2.31± 0.72 2.38± 0.20 3.037± 0.24 4.12± 0.21 5.06± 0.02
Joint Dynamics Model 2.13± 0.66 4.33± 0.85 3.88± 0.95 4.02± 0.85 1.78± 0.09 4.24± 0.06 4.70± 0.03
Visual Forward Model 2.09± 0.13 2.65± 0.27 2.55± 0.34 2.27± 0.17 4.77± 0.18 2.20± 0.05 4.65± 0.10

CFM (Ours) 0.58± 0.09 3.08± 1.19 2.29± 1.42 2.24± 0.90 1.52± 0.10 2.69± 0.25 3.97± 0.16

Rope (With DR) Cloth (With DR)
Horizontal Vertical 45◦ 135◦ Random Flat Random

Random Policy 4.75 4.93 4.80 4.87 5.73 7.975 10.12
Autoencoder 3.29± 1.08 3.70± 1.47 3.19± 1.14 3.30± 1.14 4.31± 1.16 6.26± 1.23 7.08± 2.22

PlaNet 2.35± 0.56 4.06± 1.84 3.73± 1.66 3.58± 1.46 3.04± 0.24 8.74± 0.55 10.10± 1.56
Joint Dynamics Model 1.01± 0.40 2.29± 0.10 1.35± 0.59 1.82± 0.50 1.78± 0.09 4.17± 0.17 4.64± 0.20
Visual Forward Model 3.05± 0.45 5.65± 0.37 5.37± 0.90 5.11± 1.04 4.77± 0.18 6.64± 0.66 6.07± 0.52

CFM (Ours) 0.88± 0.21 1.20± 0.07 0.99± 0.07 0.99± 0.17 1.38± 0.03 3.99± 0.15 4.40± 0.06

and interactions for learning the latent space and dynamics
model. We collect 4000 trajectories of length 50 for rope (200k
samples), and 8000 trajectories of length 50 for cloth (400k
samples).

C. Baselines

To show the substantial improvements of our model over
prior methods, we compare our method against several base-
lines: a random policy, a visual forward model, an autoencoder
trained jointly with a latent dynamics model, PlaNet [14],
and a joint dynamics model [1]. In order to ensure that pick

points are always on the rope or cloth, we constrain our pick
points using a binary segmentation of the observation image
computed by RGB thresholding. During planning, all methods
use MPC with one-step prediction.
• Random Policy: We sample pick actions uniformly over

the binary segmentation, and place actions are sampled
uniformly random in a unit square centered around the
pick location.

• Visual Forward Model: We train a forward model
similar to Kaiser et al. [19] to perform modeling and
planning purely through pixel space.



• Autoencoder: We learn a simple latent space model by
jointly training a classical autoencoder with a forward
dynamics model. The autoencoder learns to minimize the
`2-distance between reconstructed and actual images [24].

• PlaNet: We train PlaNet [14], a stochastic variant of an
autoencoder, as another latent space model. PlaNet mod-
els a sequential VAE and optimizes a temporal variational
lower bound.

• Joint Dynamics Model: We jointly learn a forward and
inverse model following Agrawal et al. [1].

For consistency across all latent space models, we use a
latent size of 8 for both the rope and the cloth environments.
For all methods, we sample 100 possible one-step trajectories
when performing closed-loop planning. See Figure 3 for
example trajectories from each baseline in comparison to our
method.

D. Training Details

We used the same encoder architectures for all models.
The encoder architecture is a series of 6 2D convolutions of
kernel sizes [3, 4, 3, 4, 4, 4], strides [1, 2, 1, 2, 2, 2], and filter
sizes [64, 64, 64, 128, 256, 256] respectively. We add Leaky
ReLU [27] activation in between each convolutional layer.
Finally, the output is flattened and fed into a fully connected
layer to produce the latent z. The forward model is a multi-
layer perceptron (MLP) with two hidden layers of size 32
which outputs the parameters for a linear transformation on
zt. Specifically for our method (CFM), we use the other
batch elements as our negative samples for a total of 127
negative samples per positive pair. For PlaNet, following
Hafner et al. [14], the decoder architecture is a dense layer
followed by 4 transposed convolutions with kernel size 4 and
stride 2 to upscale to the size of the 64 × 64 image. The
visual forward models follow the same convolutional encoder
and decoder architectures as the previous model, with action
conditioning implemented in a similar way to Kaiser et al.
[19] where actions are processed by a separate dense layer
at each resolution, multiplied channel-wise, and broadcasted
spatially. The images and actions were centered and scaled to
the range of [−1, 1]. We trained all models with batch size 128,
learning rate 10−3, and an Adam optimizer [21] for 30 epochs.
Each model was trained on a single NVIDIA TitanX GPU,
taking roughly 1−2 hours. All of our simulated environments,
evaluation metrics, and training code will be publicly released.

E. Does Using Contrastive Models Improve Performance?

In this section, we compare the results of using our method
with those of our baselines, analyzing the advantages and
benefits that contrastive models bring over prior methods. Con-
sider a naive baseline where we replace the InfoNCE loss with
an MSE loss. This is equivalent to jointly fitting an encoder
and dynamics model that minimizes ‖fφ(gθ(ot), at)− zt+1‖2.
We can see that the optimal solution is for the encoder to
encode all observations to a constant vector to achieve zero
loss. To prevent this form of a degenerate solution, we are
required to regularize our latent space in some way. Both

prior methods and contrastive learning do this in different ways
so we analyzed which methods performed better over others.
Table I shows the quantitative results comparing our method
against baselines in different rope and cloth environments,
with and without domain randomization for robot transfer.
Note that our method does better on all randomly sampled
goals with and without domain randomization, indicating
stronger generalization in latent spaces for planning. Figure 3
shows example simulator trajectories for each baseline. Each
trajectory has the same starting location, same goal image, and
was run for 20 actions.

An autoencoder regularizes its latent space by requiring
additionally training a decoder to learn to reconstruct ot from
zt. The model does well in some scenarios, such as a 45◦

diagonal, but performs poorly when domain randomization is
introduced to allow for transfer to a real robot. This is most
likely because the autoencoder is optimized to have pixel-
level perfect reconstructions, so features such as lighting and
color must be encoded in the latent space even when they
are not needed for the task. PlaNet behaves similarly to the
autoencoder, as it is also a form of a stochastic autoencoder.
It performs reasonably competitive with our method but again
fails when domain randomization is introduced.

The joint dynamics model regularizes its latent space by
jointly learning an inverse model with the forward model. The
joint model performed the best across all the baselines when
moving to domain randomized data. However, our method still
outperforms the joint model for every task.

The visual forward model is the only method that plans in
pixel space. It generally performs poorly for tasks with objects
with low area coverage, such as the different rope goal orienta-
tions, but does better than our method on the cloth flattening
task. However, since the forward model operates purely in
pixel space, it unsurprisingly suffers from a sharp degradation
in performance when introducing domain randomization. As
such, it generalizes poorly to the real robot setting.

TABLE II: Ablation experiments on forward model architecture and
similarity functions, using the same evaluation metric as Table I
(lower is better).

Rope Cloth

Linear 2.30± 0.31 4.10± 0.03
MLP 1.56± 0.10 3.95± 0.10
Log-bilinear Similarity 3.25± 0.43 4.16± 0.15
Ours 1.40± 0.02 3.81± 0.09

F. Ablations on Contrastive Models

In this section, we perform an ablation study on our method,
examining the impact of architectural designs on performance.
We ablate over two aspects of our method: the forward
model architecture, and the contrastive similarity function. For
the forward model, our method uses a Multi-Layer Percep-
tron (MLP) that outputs the parameters of a linear function that
is then applied to zt. For the contrastive similarity function, our
method follows Equation 2. The quantitative results, measured



Fig. 4: Each row represents one trajectory using our contrastive forward policy. The rope task uses 40 actions between the start and final
states, while the cloth task uses 100 actions.

TABLE III: The maximum intersection area in pixels between the goal image and observation images averaged over all seeds

Robot Experiments (Intersection in pixels) Rope (Horizontal) Rope (Vertical) Rope (45◦) Rope (135◦) Rope (Squiggle) Cloth (Flat)

Random Policy 6.880 14.727 13.662 4.266 0.049 462.513
Autoencoder 5.526 3.334 3.862 7.499 3.419 603.927
Joint Dynamic Model 17.722 23.636 33.631 21.267 18.311 772.303

Contrastive Forward Model (Ours) 32.827 36.387 33.891 38.952 20.711 1001.082

as the sum of pairwise geom distances between the final and
goal images, appear in Table II.

1) Contrastive Similarity Functions: We compare using
our similar function with the original InfoNCE similarity
function in Oord et al. [37], the log-bilinear similarity function
h(z1, z2) = exp(zT1 z2). We achieve the largest boost in
performance when switching to our similarity function, as it
is more in line with the minimization objective of learning a
correct forward model, whereas the log-bilinear model only
encourages alignment (as opposed to closeness) of embedding
vectors.

2) Forward models architectures: We experiment with a
few different forward model architectures: linear, a small
MLP, and a small MLP that outputs parameters for a linear
transformation. As expected, the biggest drop in performance
occurs when learning the simpler linear dynamics model, and
a slight drop when using an MLP for both rope and cloth
tasks. This demonstrates the need for more complex models
for latent forward-dynamics learning.

G. Real Robot Experiments

1) Real Robot Setup: We use a PR2 robot to perform our
experiments and an overhead camera looking down on the
deformable objects to get the RGB image inputs. To ensure the



Fig. 5: Rope trajectories for each baseline and our method applied on a real robot, all with the same start state, and 135◦ goal rope orientation.

policy learned in the simulator transfers over to the real world,
we apply domain randomization by changing the lighting,
texture, friction, damping, inertia, and mass of the object
during every training step within the simulator. We also use
a pick and place strategy to mimic the same four-dimensional
actions within the simulator.

To compute the actions, we employ a model predictive
control (MPC) approach of replanning our action at each
time step based on the previous image. We segment the
rope/cloth against the background to get the list of valid pick
locations of the object. We then generate possible actions by
uniformly sampling 100 random deltas in [−1, 1] combined
with randomly chosen start locations. We feed these into our
forward model along with the encoding of our start image to
get the latent encoding for each of the next prospective states.
To pick the optimal action, we find the location and delta that
minimizes the Euclidean distance from these next states to our
goal state and return this action to the robot. The delta from the
policy is on the scale of [−1, 1] for both x and y coordinates,
and we rescale this to [−5, 5] pixels. On the robot side, we use
a learned linear mapping to transform from the image’s pixel
values to Cartesian coordinates that the robot uses. To emulate
the simulator, the robot’s left arm motion is to go to the start
location, go down and close the gripper, move up, move to
the new location, move down and open the gripper, where the
height of the gripper is hard-coded to some manually tuned
value.

2) Evaluation Metrics: We use three baselines along with
our contrastive method for real-world evaluation. The first
is random actions and the others are the two policies that
performed the best with domain randomization: the autoen-
coder and the joint dynamics model [1]. For the rope, all the
models are evaluated on five goal states: horizontal, vertical,
straight line at 45◦, straight line at 135◦, and a squiggly
rope on left. For the cloth, the models are evaluated on one
goal state, a flat blue cloth with no rotation. The metric
we use is the intersection in pixels between the segmented

final image and the segmented goal image. We prefer this
instead of intersection over union (IOU) since the objects have
the same shape so the union normalization is unnecessary.
Additionally, the simpler intersection values provide more
insight for comparisons than IOU. The models are run for
40 actions on the rope or 100 actions on the cloth, and the
image after each action is stored as an observation. Among
all the observations, the one with the highest intersection with
the goal is chosen for each method. To account for different
seeds, we use 4 starting locations for our contrastive method
and 2 starting locations for the baselines, with the scores being
averaged across the different start locations. For the cloth, the
seed also involves different colors of cloths (blue, gold, white).

The specific evaluation metrics are found in Table III which
shows that our model performed the best for all the rope
and cloth tasks. The joint dynamics model is the second best
and got close results to ours on the 45◦ and squiggle rope
tasks. Some example trajectories from our model are seen
from a forward view in Figure 1 and from an overhead view in
Figure 4. Visual comparisons between our method and baseline
methods on the real robot are found in Figure 5. We see that
our method more accurately plans towards correct goal states
compared to the baselines.

V. CONCLUSION

In this paper, we propose a contrastive learning approach
for predictive modeling of deformable objects. We show
that contrastive learning learns stronger and more plannable
latent representations compared to existing methods. Since our
method only requires collecting random data in an environ-
ment, it allows for easier transfer to real robots without the
need for real-world training.
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