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Abstract—Obstacle avoidance for robotic manipulator operat-
ing in an unstructured environment is a challenging task for deep
reinforcement learning. It requires an accurate scene simulator
to achieve model adaption from simulation to the real world.
However, realistic scene modeling is difficult and time-consuming.
To improve such sim-to-real model adaption, we propose a unified
representation of obstacles and targets in both simulated and real
worlds based on 3D bounding boxes. Such abstract representation
is invariant to the shape and appearance of objects, thus unifying
the scene representation for both worlds. Consequently, models
trained in the simulated world can be effectively generalized to
unseen scenes and unseen objects in the real world. This allows
us to design a vision-based obstacle avoidance method that trains
a Soft-Actor Critic (SAC) model in a simulator and directly
applies the learned control policy in the real world. Our method
achieves better performance and generation to unseen targets
and dynamic scenes compared to state-of-the-art techniques.

I. INTRODUCTION

Motion planning for robotic manipulators in open-world
environments addresses the navigation of the end-effector
to the desired target while avoiding obstacles. The recent
advances in deep reinforcement learning (DRL) enables the
development of adaptive vision-based controllers that can
operate in dynamic environments. Such models can be learned
end-to-end, mapping observations directly to actions. A critical
issue is that such models can hardly be extended to the real-
world scenarios, given that the trial-and-error search of a
control policy through physical agent-environment interaction
is prohibitively time-consuming [3], [4].

There are two types of Sim2Real approaches. The first
builds a high-quality 3D environment with realistic rendering
to train control policy to be used in the real world environ-
ments [6], [7], [9]. The second type is to manually create phys-
ical scenes similar to the simulated environments [2], or auto-
matically reconstruct 3D models from real environments [8].
However, the domain discrepancy between simulated and real-
world still exists.

To improve the sim-to-real model adaption, a unified repre-
sentation for both simulated and real environments is highly
desired. To achieve this, we opt for the shared representation
learning inspired by [1], which proposed the concept of suc-
cessor representation for RL to improve its generalization. In
particular, we propose to use 3D bounding boxes to represent
the obstacles and targets in both virtual and real worlds. Such
abstract representation is invariant to the shape and appearance
of objects, thus unifying the scene representation for both
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worlds. Consequently, models trained in the simulated world 
can be effectively generalized to unseen scenes and unseen 
objects in the real world.

II. ARCHITECTURE

An overview of the proposed obstacle avoidance method 
for robotic manipulators is illustrated in Figure 1. The World 
Model generates the 3D bounding boxes of targets and ob-
stacles. The DRL model uses these bounding boxes and the 
robot’s states to determine the robot’s next action for reaching 
the target. Robot actions are represented by a set of joint angles 
that are fed into the robot low-level controller. Training is 
performed entirely in simulation, where it is easy to detect 
if the predicted actions cause collisions. By randomizing the 
simulated environment, we train a model that generalizes 
effectively to unseen scenes.

A. World Model

We train our model in a robotics simulator. The general idea
is that the information of all objects with different geometries
and positions in the physics engine is streamed to the RL
framework, and the RL framework issues control commands
based on the object information and send them back to the
robot in the physics engine.

We demonstrate the performance of our model in a real
dynamic setting using a real robot. In the real world, we obtain
the 3D bounding boxes of all objects by using MaskFusion that
can generate geometries and locations of the obstacles and use
the trained model to control the robot to reach the target while
avoiding obstacles.

B. Training

For the exploration module, we adopted the Soft Actor-
Critic (SAC). SAC is an off-policy algorithm that optimizes
a stochastic policy. It can be used for continuous actions. It
is composed of three neural networks including a State value
network to obtain the value of the next state, a Critic network
to obtain Q value of actions from the actor network, an actor
network to generate policy, which can also be called Policy
network.

we define the reward function that allows the manipulator to
reach the target directly and be penalized when any collision
occurs. The reward function is defined as the sum of the
weights of three items, i.e., action, collision situation, and the
distance between the end-effector and the target destination:

R = w1Ra + w2Rc + w3Rd, (1)



Fig. 1. An overview of our vision-based manipulator obstacle avoidance system.

Fig. 2. The training scenes, where the vase is set as the target and other
objects are obstacles.

Fig. 3. The total distance and reward per episode for the scene shown in
Figure 2(c).

where w1, w2, w3 are the weights of the action Ra, collision
situation Rc, and the distance between the end-effector and
the target destination Rd, respectively. The distance Rd is
calculated using the Huber loss function:

Rd =

{
0.5 ∗ d2, for d < δ

δ(|d| − 0.5 ∗ δ), otherwise
(2)

where d is the Euclidean distance between the end-effector of
the manipulator to the target, and the parameter δ determines
the smoothness.

III. EXPERIMENTS

A. Performance in Simulated Environments

We used open-source Gazebo as a simulator and combined
with ROS (Robot Operating System) [5] to implement the
manipulator obstacle avoidance training. We used a single-
arm robot Fetch. Figure 3 shows the progress of the training
of the scene in Figure 2(c), which shows the reward initially
increasing and distance decreasing, and then both parameters
converging.

Fig. 4. The real experiment setup (a) and the real-time reconstruction (b) of
the scene. (c-h) Video frame sequences when the robot reaches the target.

B. Experiments in Real Environments

To validate the generalization of the model to different real-
world settings, we tested our trained model in dynamic scenes 
where objects have different geometries and keep changing 
positions. To achieve this, we put obstacles and targets on 
a box mounted on Turtlebot 2; see Figure 4. The Turtlebot 
rotated 360 degrees clockwise, which drives the obstacles and 
targets rotate 360 degrees. A new scene was generated each 
time the Turtlebot rotated 30 degrees to a new position. We 
used the depth sensor on the Fetch robot to obtain the 3D 
bounding boxes of objects in the environment. Figure 4(b) 
shows the result of the scene model.

We trained a model in a similar way as the proposed ap-
proach, using geometries and locations as observation instead 
of 3D bounding boxes. In the training scenario, we used all 
box-shaped objects. We then applied the new model to scenes 
where objects are represented as bounding boxes. Twelve 
scenes in both simulated and real environments were tested. 
A video of the robot demonstrating the final experiment by 
reaching targets in different real-world scenes is available at 
https://youtu.be/7_d6nu0iV70.

It was found that the robot was able to reach the target 
in real-world for nine times. There were three times the 
robot collided the obstacles when two consecutive scenes 
require a larger magnitude of the actions. It can be seen that 
the proposed method outperforms in transferring the model 
from simulation to the real world. This demonstrates the 
effectiveness of the unified representation in learning real-
world interactions and shows a robust generalization from 
simulation to the real world.
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