
Necessity for More Realistic Contact Simulation
Mabel M. Zhang

Open Robotics (OSRF)
mabel@openrobotics.org

Abstract—Given the recent progress in large-scale data-driven
methods, sim-to-real is quickly becoming an enabler for access
to machine learning research, alleviating hardware costs and
physical constraints. Simulation’s role in validating new methods
is unlikely to diminish. While success in simulation is far from
a guarantee of success in the real world, it serves as a valuable
baseline and sanity check during development. In addition,
mission-critical tasks with high costs and strict time constraints,
such as deep sea and space missions, rely on simulation to
determine the minimum plausibility of the system.

As visual simulation matures and visual perception’s limits are
acknowledged in the manipulation community, tactile perception
is gaining steady interest. Unlike visual simulation, which relies
less on physics than on rendering, contact simulation depends
largely on the fidelity of physics modeling, which is crucial for
interaction-heavy tasks like manipulation and locomotion.

At the present, contact simulation is primitive even for rigid
bodies, not to mention soft and deformable bodies. This presents
a severe lack of minimum baseline and accessibility, especially
given the limited availability and flakiness of cutting-edge contact
sensors. Any improved contact simulation is a prerequisite,
before sim-to-real transfer can even come into relevance in
contact perception. This position paper supports this view by
summarizing the state of the art, challenges, and the latest
progress as cursors forward.

I. STATE OF THE ART

The need for more realistic physics modeling marks the
difference between physics-dependent algorithms, such as in-
teractions with the world in manipulation and locomotion, and
dominantly visual algorithms, such as decisions in autonomous
driving. While the latter may be trained in graphics-intensive
game engines, which are highly optimized for realistic render-
ing, the former poses minimum fidelity requirements that are
not yet met by robotics-oriented physics engines.

In simulation tools commonly used for robotics, contacts
are based on single points. This does not reflect realistic
physics, which is analog, spatially distributed, and never at
an exact infinitesimal point. Other than contact modeling
itself, other properties such as friction and material are dif-
ficult to model. Soft and deformable objects pose even more
challenges. Adding to the fact that the nature of deformable
bodies are more complex, mainstream simulation software are
predominantly designed for rigid body dynamics. Yet another
dimension to the sim-to-real gap is real-time execution. All
of the problems stated above are difficult even with no
requirements on speed.

A number of physics engines and simulation software exist.
Examples of physics engines commonly used in robotics that
are freely available include Open Dynamics Engine (ODE)
[1], [2], Dynamic Animation and Robotics Toolkit (DART)

[3], and Bullet [4]. Most simulation software are designed
primarily for rigid body dynamics. Examples include open
source ones such as Gazebo [5], NVIDIA PhysX [6], Drake
[7], Klampt [8], and Pinocchio [9]–[11], and proprietary ones
such as MuJoCo [12]. Some of the above handle soft and
deformable body dynamics [3], [4], [6], [12]. Fewer are
specifically designed for soft bodies, such as VoxCAD [13],
and biomedical-oriented simulation like SimBody [14] and
Simulation Open Framework Architecture (SOFA) [15]. At the
present, the capability of soft body simulation is limited, and
it is not widely used in robotics.

Other than contact simulation, contact sensor simulation is
lacking, as sensor surfaces are often deformable. Moreover,
the sensor data is directly affected by force distribution over
a contact area, which is not well modeled, since contacts are
modeled by discrete points. Volume-based contact simulation
has been studied [16] but is not widely available for robotics.

II. CHALLENGES AND PROGRESS

A. Game engines vs. physics engines

Simulation is by nature a central topic in graphics and
animation, where the goal is to synthesize environments, with
some that may resemble the real world. In contrary, the role
of simulation in robotics is, understandably, an aside. It is not
traditionally viewed as a core robotics problem. As a result,
even though increasingly many roboticists rely on simulation,
it does not receive an adequate amount of academic attention
to move significantly forward, especially in the area of physics
simulation.

In practice, this translates to that robotics researchers are
limited to off-the-shelf simulation software that do not have re-
alistic physics. This leads to early abandonment of simulation
for the real world, in applications that can afford it. However,
in applications that are mission-critical (such as space and
deep sea), require high repetitions, demand close inspection
of dynamics in slow time steps, or in general are expensive
to run or require reproducible results, a working system in
simulation is a prerequisite that cannot be forgone.

There are a few motivational and practical differences
between graphics and robotics that justify more attention to
be devoted to robotics-oriented simulation research. First, in
balancing the trade-off between physics and rendering, two
computationally intensive components in simulation, graphics
applications naturally prioritize rendering, while robotics has
firm practical requirements on high-fidelity physics. Second,
tools developed for the entertainment industry have a large



computational budget, with high-performing GPUs for real-
time computation. Offline rendering is allowed for non-real-
time needs. In robotics, computational power is often limited
by payload, power consumption, and heat dissipation. At the
same time, real-time computation is still required and is often
associated with critical safety risks.

Third, even though game engines have physics components,
they do not have sensing components that translate directly to
sensor readings in the real world. In simulation, raw physical
quantities such as force at specific points may be accessible,
but the real world does not have such oracles and rely on
sensors placed on robots. Simulation of sensors other than
camera is generally unavailable or unrealistic, even in robotics-
oriented software. This means in order to make use of simu-
lated physical quantities in the real world, the corresponding
quantities, such as force, must first be inferred from real
sensor data. Such inference is still active research and does not
represent true physics. The lack of sensor simulation leaves a
gap in data bewteen simulation and the real world.

Recently, traditionally graphics communities have initiated
robotics-oriented simulations [6], [17], [18], targeting large-
scale and computationally expensive learning.

B. Contact sensor simulation

For stationary or mobile robots on the ground, the limits of
physics simulation often cited are friction, surface material,
contact forces, real-time computation, to name a few. For
aerial, surface, and underwater robots, the array of limitations
expand to even less explored areas like fluid dynamics. This
extended abstract focuses on contact simulation, a small slice
of the array with large demand and room for improvement.

Other than simulating contact physics, the challenges of
which are outlined in Section I, the simulation of contact sen-
sors can provide complementary information from rendering.
Specifically, optical tactile sensors use camera images to infer
physical properties such as force normals, shear, torque, and
other quantities.

The past year has seen a surge of new optical tactile sensors,
with DIGIT [19] and OmniTact [20] based on the concept of
GelSight [21], Li et al. [22] and GelTip [23] combining the
concepts of GelSight and TacTip [24] to measure both tactile
and force information, and NeuroTac [25] based on TacTip.

Up to now, the manufacturers of tactile sensors have often
been the only users, with a few commercial exceptions like
BioTac [26] and TakkTile [27]. However, with the recent
release of GelSight manufacturing method [28] and the low-
cost 3D-printable DIGIT, the use of optical tactile sensors
is expected to increase. Simulation of these sensors will not
only widen access but also provide a platform for large-scale
learning, which GelSight and BioTac have already been used
in the past, only in the real world.

Toward that end, in the past year, Gomes et al. [29] simu-
lated the GelSight sensor [28] using a depth camera in Gazebo.
Narang et al. [30] developed finite element modeling using
ANSYS to simulate the deformable surface of the BioTac
sensor. Ding et al. [31] designed a soft body simulation model

for TacTip using Unity [18], by applying operations on mesh
vertices. The model learned from simulation is then transferred
to the real world for edge prediction with no real-world data.

The unique advantage brought forth by optical contact
sensors is that physics and rendering, opposite ends of the
performance trade-off, can now be complementary. Difficult
problems in contact physics simulation may be mitigated by
optical tactile data.

C. Physics vs. rendering

Physics and rendering are two core components of simula-
tion. Often, one is traded off for the other, because both are
computationally expensive. Alternatively, it may be possible
to supplement one with the other.

In the case of contact simulation, optical tactile sensor
simulation can be used to add rich physical data otherwise
difficult and slow to compute. GelTip [23] and [22] are
examples of real sensors that combine the camera data of
the tactile imprint on the elastomer sensor surface with the
physical data from force pins embedded in the sensor.

In the case of soft bodies, one possible way to improve
simulation with learning is to optimize simulation parameters
using real-world visual data. For example, interaction with
deformable objects can be recorded in the real world. Physical
quantities such as surface normals can then be obtained from
depth cameras and used to correct the simulated normals.
Liang et al. [32] used real-world object poses to optimize pa-
rameters in a high-fidelity simulation that supports deformable
body dynamics [33].

III. CONCLUSION

Contact simulation of higher fidelity than the current prim-
itive state is a minimum requirement for accessibility and
reproducibility of contact-based research, which is gaining
traction in locomotion and manipulation. Otherwise, the data
gap between simulation and reality remains wide, and the data
are in different formats, fundamental physical quantities and
digital sensor input, respectively. Only when the gap is nar-
rowed would sim-to-real methods have meaningful simulation
data to train on, especially given the quantity and dimension-
ality required for data-driven approaches, even in sim-to-sim.
Such developments will not only propagate manipulation and
locomotion research beyond the pre-contact visual stage, but
also enable wider and more diverse community participation.
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