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Abstract—Automating robust walking gaits for legged robots
has been a long-standing challenge. Previous work has achieved
robust locomotion gaits on sophisticated quadruped hardware
platforms through the use of reinforcement learning and imitation
learning. However, these approaches do not consider the strict
constraints of ultra-low-cost robot platforms with limited comput-
ing resources, few sensors, and restricted actuation. These con-
strained robot platforms require special attention to successfully
transfer skills learned in simulation to reality. As a step toward
robust learning pipelines for these constrained robot platforms,
we demonstrate how existing state-of-the-art imitation learning
pipelines can be modified and augmented to support low-cost,
limited hardware. By reducing our model’s observational space,
leveraging TinyML to quantize our model, and adjusting the
model outputs through post-processing, we are able to learn and
deploy successful walking gaits on an 8-DoF, $299 (USD) toy
quadruped robot that has reduced actuation and sensor feedback,
as well as limited computing resources. A video of our current
results can be found at: https://youtu.be/jloya0TOzWA.

I. INTRODUCTION AND RELATED WORK

Imitation learning has been used to achieve complicated,
natural-looking skills by leveraging real animal locomo-
tion [7], enabling complex quadruped, bipedal, and humanoid
robots to achieve a range of skills, including walking, trotting,
and back-flipping [6, 8]. Such pipelines utilize motion capture
data of a real-life character performing a skill, and retarget
the motion onto the robot frame in simulation. The retargeted
motion capture data is then used as the reference to train
a reinforcement learning policy where the reward function
encourages the learned policy to emulate the reference motion.

The imitation learning pipeline developed by Peng et al. [7]
has been successfully demonstrated to close the reality gap
and perform well on sophisticated quadruped robot platforms
such as the Unitree A1 and Laikago robots [13]. Complex
locomotion skills, including pace, trot, side-step, turns, and
hop-turn, were transferred from simulation onto the physical
robots. However, these policies rely on the precise actuators, a
broad menu of sensors, and the high maneuverability of these
sophisticated robots. They cannot be directly applied to ultra-
low-cost resource-constrained robots, which are a promising
solution for applications ranging from search and rescue to
routine infrastructure monitoring and maintenance [5]. As

Fig. 1. Specification comparison between two quadrupeds, the Uni-
tree A1 [13] and the ultra-low-cost Petoi Bittle [11], highlighting the contrast
between the capabilities of fully-featured vs. resource-constrained hardware.

such, further work is needed to extend the usability of these
imitation learning pipelines to ultra-low-cost robot platforms
that lack these features (Fig. 1). While recent work on con-
strained robot platforms has achieved locomotion skills in
simulation [14], and some have even transferred these skills to
hardware [4, 10], this success has yet to be achieved through
the use of streamlined imitation learning pipelines.

In this work, we identify the key challenges to adapting
imitation learning pipelines to ultra-low-cost robots with poor
actuation, limited computing resources, and limited sensors;
and propose practical solutions to overcome these difficulties.
These initial steps help lay the groundwork for a future with
globally-accessible, capable, ultra-low-cost robots.

II. CHALLENGES AND SOLUTIONS

Observability. The use of low-cost actuators increases the
difficulty of closing the reality gap. For example, the servo
motors on the Bittle robot do not have encoders. As such, their
precise position is not observable. This differs from the motors
used on more expensive quadrupeds and breaks state-of-the-
art imitation learning pipelines which assume that the robot
has perfect knowledge of its joints. In fact, these pipelines
assume a 120 dimension observation space consisting of IMU

https://youtu.be/jloya0TOzWA


Fig. 2. Reducing observational space, freezing variables, and quantizing
model weights significantly decreases model size with minimal accuracy loss.

data (roll, pitch, roll rate, pitch rate), motor angles, previously
predicted actions, as well as simulated future reference motion
frames. As we cannot run a simulator onboard a robot like
Bittle in real time, and cannot observe the joint angles, we
adapted our pipeline to use a reduced 42-dimensional space
that removes the observed joint angles and future reference
motion frames. (Fig. 2). We find that this reduction in the
observation space still leads to natural-looking walking gaits.

Computation. The transfer of trained policies from simu-
lation to real-life is more difficult on ultra-low-cost platforms
due to their limited onboard computing. The neural networks
trained on a server or laptop might not always fit on a con-
strained platform’s computing resources, e.g., Bittle’s onboard
microcontroller, or internet-of-things (IoT) processors like the
RaspberryPi Zero 2W [9] that can be optionally added to Bittle
(at the expense of additional power and weight). As such we
employ embedded machine learning “TinyML” [1] techniques
to reduce the size of the model. By applying graph freezing
to convert all variables to constants, and Float16 quantization
to convert floating point weights from 32-bit to 16-bit, we
reduce the size of the model by a factor of 8x. TinyML
techniques have been very successful at reducing the size of
ML models without sacrificing accuracy [2], and in our case
it also does not have a large impact on accuracy, producing
a reconstruction error of less than 0.0001 radians (Fig. 2).
Overall, by combining the reduced observation space, graph
freezing, and quantization we reduce the model size by 10x.

Controllability. A discrepancy between controlling the sim-
ulated Bittle versus the physical Bittle can be found in the
actuator precision. The simulated Bittle can reach any joint
angle predicted by the policy. However, this is inconsistent
with reality. The servo motors found on the physical Bittle
can only be commanded by joint actions changes that are
1◦ or larger. As such, we incorporated a 1-degree dead
band zone into the simulation during training. Another issue
is that communication with the servo motors using Bittle’s
source code limits the speed of actions passed to the motors.
Commands are only applied to the servo motors if the previous
command is completed. Since the simulated Bittle can be
commanded a new action while the joints are still in motion,
the model predicts large joint angle changes as targets that the
simulated robot never reaches. This causes the physical robot
to try to achieve motions that are much larger than desired. To

Fig. 3. Smoothing action commands to the real robot helps avoid
unrealizable large joint angle changes predicted by the learned model. We
show a 2D projection of raw model outputs (blue), actual joint angles reached
in simulation (gray), and post-processed smoothed commands (red).

Fig. 4. Adjusting for hardware limitations enables transfer of learned
movement from simulation (below) to real ultra-low-cost robots (above).

address this, we smooth the predicted actions using a trailing
moving average (Fig. 3).

III. HARDWARE EXPERIMENTS

Methodology. We deployed our model onto a Raspber-
ryPi Zero 2W [9] (an IoT-scale device) placed on top of an
8-DoF Petoi Bittle quadruped [11]. We trained our policy for
60 million steps using the Pybullet physics engine [3] and the
stable-baselines PPO1 policy [12]. Once deployed on the real-
life Bittle robot, each action is delivered to the servo motors
using serial commands. A notable sim-to-real inconsistency
was found between the coordinate frame orientations of the
simulation and physical Bittle IMU. Since the physical IMU
was inverted, we rotated IMU data received from the physical
Bittle 180◦ about the y-axis to synchronize the frames.

Results. As illustrated in Fig. 4, by correcting the IMU
data and employing the solutions described in Section II,
we were able to achieve a stable walking gate on physical
robot hardware. A video of this experiment can be found at
https://youtu.be/jloya0TOzWA.

IV. CONCLUSION AND FUTURE WORK

In this paper, we demonstrate that sophisticated imitation
learning pipelines can be applied to ultra-low-cost robot plat-
forms by understanding and adjusting for hardware limitations.
We see many opportunities for future work, including: ex-
ploring the development of robust policies that leverage data
from additional low-cost sensors; developing policies for more
complex movements; and leveraging “helper” policies to adjust
for the actuator and sensor limitations of our robot platform.

https://youtu.be/jloya0TOzWA
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