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Abstract—Task-relevant grasping is critical for industrial as-
sembly, where downstream manipulation tasks constrain the set
of valid grasps. Learning how to perform this task, however, is
challenging, since task-relevant grasp labels are hard to define
and annotate. There is also yet no consensus on proper represen-
tations for modeling or off-the-shelf tools for performing task-
relevant grasps. This work proposes a framework to learn task-
relevant grasping for industrial objects without the need of time-
consuming real-world data collection or manual annotation. To
achieve this, the entire framework is trained solely in simulation,
including supervised training with synthetic label generation and
self-supervised, hand-object interaction. In the context of this
framework, this paper proposes a novel, object-centric canonical
representation at the category level, which allows establishing
dense correspondence across object instances and transferring
task-relevant grasps to novel instances. Extensive experiments on
task-relevant grasping of densely-cluttered industrial objects are
conducted in both simulation and real-world setups, demonstrat-
ing the effectiveness of the proposed framework. Code and data
are available at https://github.com/wenbowen123/catgrasp

I. Introduction
Robot manipulation often requires identifying a suitable

grasp that is aligned with a downstream task. An important
application domain is industrial assembly, where the robot
needs to perform constrained placement after grasping an
object [2], [3]. In such cases, a suitable grasp requires sta-
bility during object grasping and transporting while avoiding
obstructing the placement process. To tackle this problem,
this work aims to learn category-level, task-relevant grasping
solely in simulation, circumventing the requirement of man-
ual data collection or annotation efforts. In addition, during
the test stage, the trained model can be directly applied to
novel object instances with previously unseen dimensions and
shape variations, saving the effort of acquiring 3D models
or re-training for each individual instance. In summary, the
contributions of this work are the following: (a) A novel
framework for learning category-level, task-relevant grasping
of densely cluttered industrial objects and targeted placement;
(b) This work models dense, point-wise task relevance on
3D shapes by representing it as hand-object contact heatmaps
generated in a self-supervised manner in simulation; (c) We
propose "Non-Uniform Normalized Object Coordinate Space"
(NUNOCS) representation for learning category-level object
6D poses and 3D scaling, which establishes more reliable
dense correspondence across object instances; (d) Direct sim-
to-real transfer is achieved by leveraging domain randomiza-
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Fig. 1: Given a database of 3D models of same category, the proposed method learns: (a)
an object-centric NUNOCS representation that is canonical for the object category, (b) a
heatmap that indicates the task achievement success likelihood dependent on the hand-
object contact region during the grasp, and (c) a codebook of stable 6D grasp poses. The
heatmap and the grasp poses are transferred to real-world, novel unseen object instances
during testing for solving task-relevant grasping.

tion [4], bi-directional alignment [5], and domain-invariant,
hand-object contact heatmaps modeled in a category-level
canonical space.

II. Problem Statement

Given a dense clutter of the same type of novel unseen
objects, the objective is to compute task-relevant 6D grasp
poses that enables direct transportation for the downstream
task. The inputs to the framework are listed below:
• A collection of 3D models M𝐶 belonging to category 𝐶

for training (e.g., Fig. 1 top-right). They do not include any
testing instances of the same category, i.e., 𝑀 test

𝐶
∉M𝐶 .

• A downstream placement task 𝑇𝐶 corresponding to the
category (e.g., Fig. 1), including a matching receptacle and
the criteria of placement success.
• A depth image 𝐼𝐷 of the scene for grasp planning during
the test stage.

III. Approach

Fig. 2 summarizes the proposed framework. Offline, given
a collection of models M𝐶 of the same category, synthetic
data are generated in simulation for training the NUNOCS
Net, Grasping Q Net and 3D U-Net. Then, self-interaction
in simulation provides hand-object contact experience, which
is summarized in task-relevant heatmaps for grasping. The
canonical NUNOCS representation allows the aggregation
of category-level, task-relevant knowledge across instances.
Online, the category-level knowledge is transferred from the
canonical NUNOCS model to the segmented target object via
dense correspondence and 9D pose estimation, guiding the
grasp candidate generation and selection.

https://github.com/wenbowen123/catgrasp
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Fig. 2: Overview of the proposed framework. Right: (a) Given a collection of CAD models for objects of the same category, the NUNOCS representation is aggregated to generate
a canonical model for the category. The CAD models are further utilized in simulation to generate synthetic point cloud data for training all the networks (3D U-Net, NUNOCS
Net and Grasping Q Net). Meanwhile, the category-level grasp codebook and hand-object contact heatmap are identified via self-interaction in simulation. Top-left: (b) A 3D
U-Net is leveraged to predict point-wise centers of objects in dense clutter, based on which the instance segmentation is computed by clustering. Center: (c) The NUNOCS Net
operates over an object’s segmented point cloud and predicts its NUNOCS representation to establish dense correspondence with the canonical model and compute its 9D pose
𝜉𝑜 ∈ {𝑆𝐸 (3) ×𝑅3 } (6D pose and 3D scaling). This allows to transfer the precomputed category-level knowledge to the observed scene. Bottom-left: (d) Grasp proposals are
generated both by transferring them from a canonical grasp codebook and directly by sampling over the observed point cloud. IK-infeasible or in-collision (using FCL [6]) grasps
are rejected. Then, the Grasping Q Net evaluates the stability of the accepted grasp proposals. This information is combined with a task-relevance score computed from the grasp’s
contact region. The entire process can be repeated for multiple object segments to find the currently best grasp to execute according to 𝑃 (𝑇,𝐺) = 𝑃 (𝑇 |𝐺)𝑃 (𝐺) . Red dashed
arrows occur in the offline training stage only.

IV. Experiments
Evaluations are performed in similar setups in simulation

and the real-world. The hardware is composed of a Kuka
IIWA14 arm, a Robotiq Hand-E gripper, and a Photoneo 3D
camera, as in the wrapped figure. Simulation experiments are
conducted in PyBullet, with the corresponding hardware com-
ponents modeled and gravity applied to manipulated objects.
At the start of the bin-picking process, a random number of ob-
ject instances (between 4 to 6) of the same type are randomly
placed inside the bin to form a cluttered pile. Experiments
for each of the 12 object instances have been repeated 10
times in simulation and 3 times in real-world, with different
arbitrarily formed initial pile configurations. This results in
approximately 600 and 180 grasp evaluations in simulation
and real-world respectively for each evaluated approach. For
each bin-clearing scenario, its initial pile configuration is
recorded and set similarly across all evaluated methods for
fair comparison. After each grasp, its stability is evaluated by a
lifting action. If the object drops, the grasp is marked as failure.
For stable grasps, additional downstream category-specific
placement tasks are performed to further assess the task-
relevance. A stable grasp is further examined and marked as a
task-relevant grasp, if the placement also succeeds. Otherwise,
it is marked as a task-irrelevant grasp, though being stable. The
placement receptacles are CAD designed and 3D printed for

each object instance with tight placement tolerances (< 3𝑚𝑚).
For evaluation purposes, the placement planning is performed
based on manually annotated 6D in-hand object pose post-
grasping. This effort is beyond the scope of this work.
Our proposed method is compared against:
• PointNetGPD [7]: A state-of-the-art method on robust
grasping. For fair comparison, the network is retrained using
the same synthetic training data of industrial objects as our
method. At test time, it directly samples grasp proposals
over the raw point cloud without performing instance seg-
mentation [7].
• Ours-NA: A variant of our method that does not consider
task-relevant affordance but still transfers category-level
grasp knowledge. Only 𝑃(𝐺) is used for ranking grasp
candidates.
• Ours-NOCS: A variant of our method by replacing the
NUNOCS representation with NOCS [8] for solving the
category-level pose, while the remainings are the same as
our framework.
The quantitative results in simulation and real-world are

shown in Fig. 3. The success rate excludes the task-irrelevant
or failed grasps. As demonstrated in the two tables, Ours
significantly surpasses all baselines measured by the success
rate on task-relevant grasping in both simulation and real-
world.
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Screw1 Screw2 Screw3 Screw4

Nuts HMN Screws Total

PointnetGPD 53.3% 49.2% 45.0% 49.2%
Ours-NA 51.1% 58.3% 50.0% 53.1%
Ours-NOCS 75.6% 71.7% 80.0% 75.7%
Ours 97.8% 88.3% 93.3% 93.1%

Nuts HMN Screws Total

PointnetGPD 33.3% 35.0% 38.0% 35.4%
Ours-NA 40.0% 43.3% 42.9% 42.1%
Ours-NOCS 70.0% 58.3% 52.5% 60.3%
Ours 93.3% 83.3% 86.7% 87.8%

Fig. 3: Left: The 3 object categories: Nuts, HMN and Screws. For each category, the first row is a collection of 3D models used for learning in simulation. The second row is the
novel unseen instances used during testing. Middle: Hardware setup in simulation and real-world. Right: Percentage of task-relevant grasping in simulation (top) and real-world
(bottom) respectively.



References
[1] B. Wen, W. Lian, K. Bekris, and S. Schaal, “CaTGrasp: Learning
Category-Level Task-Relevant Grasping in Clutter from Simulation,”
ICRA, 2022.

[2] A. S. Morgan, B. Wen, J. Liang, A. Boularias, A. M. Dollar, and
K. Bekris, “Vision-driven compliant manipulation for reliable, high-
precision assembly tasks,” RSS, 2021.

[3] J. Luo, O. Sushkov, R. Pevceviciute, W. Lian, C. Su, M. Vecerik, N. Ye,
S. Schaal, and J. Scholz, “Robust multi-modal policies for industrial
assembly via reinforcement learning and demonstrations: A large-scale
study,” RSS, 2021.

[4] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel, “Do-
main randomization for transferring deep neural networks from simulation
to the real world,” in IROS 2017.

[5] B. Wen and et al, “se (3)-tracknet: Data-driven 6D pose tracking by
calibrating image residuals in synthetic domains,” in IROS, 2020.

[6] J. Pan, S. Chitta, and D. Manocha, “Fcl: A general purpose library for
collision and proximity queries,” in 2012 IEEE International Conference
on Robotics and Automation. IEEE, 2012, pp. 3859–3866.

[7] H. Liang, X. Ma, S. Li, M. Görner, S. Tang, B. Fang, F. Sun, and J. Zhang,
“PointNetGPD: Detecting grasp configurations from point sets,” in IEEE
International Conference on Robotics and Automation (ICRA), 2019.

[8] H. Wang, S. Sridhar, J. Huang, J. Valentin, S. Song, and L. J. Guibas,
“Normalized object coordinate space for category-level 6d object pose
and size estimation,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, pp. 2642–2651.


	Introduction
	Problem Statement
	Approach
	Experiments
	References

