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Abstract—Accurate simulations allow modern machine learn-
ing techniques to be applied to robotics problems, with sample-
collection runtimes orders of magnitudes faster than the real
world. Current reinforcement learning approaches require la-
borious manual calibration of carefully designed models, or, in
a model-free context, vast amounts of training data to acquire
such accurate models from real-world trials. In this work, we
introduce a new layer in the deep learning toolbox that imposes
a strong inductive bias to generate physically accurate predictions
of rigid-body dynamics and allows for the automatic inference
of system parameters given an ad-hoc model description.

I. INTRODUCTION

Reinforcement learning (RL) enables robots to learn robust
policies from experience. Since most state-of-the-art RL al-
gorithms suffer from a prohibitively high sample complexity
to train in the real world, policies are typically trained in
a simulator first before being transferred onto the actual
system. Discrepancies between simulation and reality impair
the performance of such policies. There are many approaches
to solving this transfer learning problem, including improving
simulation fidelity and domain randomization techniques [1].

Instead of open-loop Sim2Real transfer, in this work, we
investigate how simulators can be leveraged as a model of
the real world that can be updated from experience. By main-
taining a probabilistic representation of physical parameters,
simulators can play a role in designing exploration policies
that excite unseen areas of the physical parameter space. In
this way, simulators and trained policies can jointly improve
in a Real2Sim and Sim2Real feedback process.

This work is based on our recent article [2] that is currently
under review. While we introduce a differentiable physics
engine in the previous work, this paper differs significantly by
focusing on the important robot learning problem of Sim2Real
transfer. We present new experiments where we predict the
motion of a real-world double pendulum and show how
probabilistic estimation can be leveraged to attain a consistent
model of the real world that opens avenues to a principled
strategy of domain randomization, a commonly used technique
in transfer learning.

II. RIGID BODY DYNAMICS

Throughout this paper, we estimate quantities of a kinematic
chain of rigid bodies that are connected by joints. Following
[3], we implement the Articulated Body Algorithm which
computes the forward dynamics, i.e., the joint accelerations
at the next time step given the current joint positions and
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velocities. Subsequently, we advance the system dynamics
using semi-implicit Euler integration. Having implemented the
entire physics engine in the C++ automatic differentiation
framework Stan Math [4] allows us to compute accurate
gradients of any quantity in our simulator, achieving fast
convergence with gradient-based optimizers that leverage our
engine to estimate model parameters, optimize trajectories, or
derive control policies. Throughout this paper, we denote a
single step of our physics simulator by fθ(·) – a function
conditioned on model parameters θ which returns the next
world state given the current.

III. REAL2SIM TRANSFER

To demonstrate the capability of our approach to estimate
physical parameters of chaotic systems in the real world, we
estimate the kinematic parameters of a compound pendulum.
The dynamics of a pendulum are fully determined by the
length of each link. Using a VICON motion capture system,
we obtain sub-millimeter accurate positional trajectories of a
pendulum of two masses attached to a rigid frame.

Estimating the length of each link is trivial given positional
information. Instead, we exercise our approach by estimating
these lengths from a trajectory τ = {q0, · · · ,qT }, where qt
are the generalized joint positions at time step t. We model
the double pendulum using spherical joints whose 3D rotations
are defined by quaternions. Given q0 = q∗

0, we minimize

L =
∑
t

||z(fθ(qt−1))− z(q∗
t )||22, (1)

where z computes unit heading vectors for given quaternions,
and q∗

t are the joint coordinates of the real pendulum.
Leveraging the differentiability of fθ, we employ the

gradient-based Adam optimizer to estimate the link lengths.
We converge after ca. 80 epochs for trajectories 10 steps long,
sampled at 25Hz (cf. Fig. 1). Our performance is hampered
by the fact that we do not currently simulate joint damping,
and use a first-order integrator that quickly accumulates error.
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Fig. 1. Estimation of the two link lengths (in meters) of a real double
pendulum modeled via spherical joints.



Fig. 2. Probabilistic estimation of the lengths of a three-link compound
pendulum using a Gaussian Mixture Model. Top left: loss evolution, top right:
3D visualization of the evolution of the GMM kernels, bottom: GMM kernel
evolution (means are solid lines, µi ± σi are shaded areas). Numbers on
vertical stripes indicate number of real world samples observed in the online
estimation process.

IV. PROBABILISTIC ESTIMATION

Minimizing the sum-of-squares error in Eq. 1 by directly
adjusting the model parameters θ results in the approximation
of the mean of the observed data (cf. [5]). While in the
previous estimation experiment, the parameters are defined
uniquely over a long-enough trajectory, such assumption need
not hold anymore for more complex models or very few
samples from the real system. Furthermore, some models of
real-world systems can have coupled variables. For instance,
if one wants to estimate both the length and the center of
mass of a pendulum given a trajectory of angles, the two
quantities of interest would mirror each other. Since we are
interested in a general estimation approach that is able to
capture potential couplings between model parameters and
yield results under the presence of noisy observations, we
investigate a multi-modal stochastic estimation approach to
infer physical parameters.

In this experiment we consider a three-link compound
pendulum parameterized by the 3D vector of link lengths θ.
Instead of having access to the entire joint angle trajectory
from the real system, we investigate an online estimation
process where the parameters need to be inferred as samples
q∗
t are observed from the actual pendulum. We model the

distribution over θ by a Gaussian Mixture Model (GMM)
consisting of three multivariate Gaussian kernels conditioned
on learned variables for mixing coefficients φi, mean µi and
variance σi of kernel i (cf. Fig. 3). To compute a sample θ from
a GMM, we need to sample from a categorical distribution
γ ∼ Discrete(φ1, φ2, φ3) that uses the mixing coefficients as
probabilities in order to pick the index γ of the Gaussian
kernel we eventually sample from. To achieve an end-to-
end differentiable stochastic computation graph [6] where we
can optimize the GMM parameters w.r.t the final loss, we
approximate this operation using Gumbel Softmax [7]:

γk =
exp ((log φk +Gk)/λ)∑n
i=1 exp ((log φi +Gi)/λ)

,

Fig. 3. Stochastic computation graph [6] of our multimodal estimation
pipeline based on a three-component Gaussian Mixture Model (GMM) from
which the sampled model parameters θ are given to the differentiable
physics engine which in turn deterministically computes trajectories {q}Tt=0.
The overall loss between the trajectories and demonstrations {q∗}Tt=0 is
minimized, with gradients flowing end-to-end from the GMM parameters
µi, σi, φi to L.

where Gi, Gk ∼ Gumbel and λ (set to 2/3) is the tempera-
ture defining the “spikiness” of the approximation. Next, we
sample from each Gaussian kernel and sum up these samples
weighted by γi to obtain the physical model parameters θ that
we feed into the physics engine which computes a trajectory
of joint positions. Minimizing the Huber loss between the
observed and generated trajectories via the Adam optimizer,
the Gaussian kernels converge after about 120 training epochs
(Fig. 2) to the true model parameters, while the variance is
constantly decreasing.

V. CONCLUSION

In this work, we have presented a novel approach to
estimating physical parameters of complex real-world systems
consisting of rigid bodies. Our differentiable physics engine
allows for its integration into deep learning models where
predictions are based on interpretable, physical parameters
that can be optimized using end-to-end-derived gradients.
As we have demonstrated, by imposing stochasticity on the
model parameters, we are able to capture noisy observations
and couplings between these variables. Such approach allows
our simulator to act as a model of the real world that can
be updated online and provide an informative estimate of
its uncertainty. While we have thus far only investigated
the Real2Sim aspect of transfer learning, future research is
directed towards leveraging the model uncertainty to guide
exploration in the real world such that new observations further
close the gap between simulation and reality.
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