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Reinforcement Learning with Cartesian Commands
and Sim to Real Transfer for Peg in Hole Tasks

Manuel Kaspar, Jürgen Bock∗

Abstract—We show how to learn robotic peg in hole tasks with
reinforcement learning. Using the Operational Space Control
framework enables us to learn contact rich tasks with adjustable
degrees of freedom in cartesian space. We perform system iden-
tification with an CMA-ES optimizer for aligning a simulation
environment with the dynamics of a real robot. By randomizing
the dynamics during learning we can directly transfer a policy
for a peg in hole task to a real KUKA LBR iiwa.1

I. INTRODUCTION

Most of today’s Reinforcement Learning (RL) research with
robots is still dealing with toy tasks, that do not reach the
requirements of industrial problems. This is partly due to
the fact that training on real robots is very time-consuming.
Moreover, it is not trivial to setup a system where the robot
can learn a task, but does not damage itself or any task
relevant items. Therefore, the idea of sim to real transfer [1]
was introduced. While this idea seems convincing in the first
place, bridging the reality gap is a major difficulty, especially
when contact dynamics, soft bodies etc. are involved, where
dynamics are difficult to simulate. This paper investigates
possibilities for sim to real transfer while trying to make the
task to learn as easy as possible by using the Operational
Space Control framework (OSC) [2]. For some problems like
redundancy resolution or inverse kinematics calculation good
analytical solutions exist, so the framework takes care about
those parts. Furthermore, we can decide to only learn actions in
certain cartesian DOF which reduces the task dimensionality.
Our current setup tries to perform a peg in hole task as shown
in Fig. 1, where we currently fix the rotations as we know the
needed final rotation and just learn the necessary translation for
a successful insertion. In every timestep our action contains an
offset xdes, ydes, zdes to the current position xcur, ycur, zcur.
The target position is implicitly encoded into the observation
vector as e.g. xobs = xcur − xtarget and the current setup has
an insertion tolerance of 3mm. The OSC framework can map
cartesian tasks into joint-torque commands and spans a spring,
when a force prohibits it from reaching the desired position.
This enables the robot to learn tasks, that require robot-
environment contacts, because no hard position controller is
used. We believe those are tasks where RL can bring benefits
compared to traditional techniques.
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Fig. 1: Simulated and real setting

II. RELATED WORK

Over the past years an increasing number of works tried to
use sim to real transfer for learning robotic control: Progressive
Nets [3] were proposed for giving the neural network a flexible
way of using or not using past experience which has been
collected in simulation, when fine tuning on a real system.
Successful sim to real transfer for robots was demonstrated
by [4] where in-hand manipulation of a cube is learned. [1]
learn a policy to move an object to a specific position on a
table and also introduce and analyze the idea of dynamics
randomization in simulation.

III. SIM TO REAL TRANSFER

In this work we used the Soft-Actor-Critic (SAC) algorithm
explained in [5]. In SAC not only a reward r is maximized,
but also the entropy of the actor. The usage of this maximum
entropy framework leads to robust policies, that do not collapse
into a single successful trajectory but explore the complete
range of successful trajectories. The objective in the maximum
entropy framework is:
π = argmaxπ

∑
t E(st,at)∼pπ [r(st, at) + αH(π(·|st))],

where α is an automatically adjusted temperature parameter
that determines the importance of the entropy term [6]. We
stack n past observations and actions into the observation
vector thereby trying to recover the Markov-condition [7] and
giving the network the possibility to figure out the dynamics
of the system. As reward function we used

Cpos = α · ‖xdist‖2 + β · ‖xdist‖1 (1)

Caction = γ ·
nr actions∑

i=0

a2i (2)

Cbonus = 50 if peg reached hole bottom (3)
Ctotal = −Cpos − Caction + Cbonus (4)

where xdist = xtarget − xcurrent and α = 0.1, β = 0.9,
γ = 0.0005.
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Fig. 2: Real and simulated trajectories at the beginning of the
optimization process (left) and afterwards (right). Every sub-
trajectory consists of 50 steps (x-axis). So, the figure shows 9
sub-trajectories behind each other.

A. Simulation environment

We use the pybullet simulation, where we load an KUKA
LBR iiwa 14kg with appropriate dynamics values and an at-
tached Schunk MEG50 gripper. We directly command torques
to the joints of the robot.

B. Dynamics and Environment Randomization

As introduced in [4] and [1] we performed dynamics and
environment randomization for transferring our policy from
simulation to the real world. We randomize link masses,
surface friction, joint damping, gravity, goal position (x, y)
and goal imprecision (x, y). Goal imprecision means an offset
between the real hole center and the position we tell the
agent, what emulates a noisy vision system. Indeed, this
randomization led to an emergence of a more subtle search
strategy.

C. System Identification

In our first trials for using a policy, which was learned in
simulation and transferred to the real robot, we found, that it
worked pretty poorly. The dynamics of the real robot were too
different from the dynamics of the simulated one. Dynamics
randomization is important for getting robust against (slightly)
different dynamics. Nevertheless, in our experiments it showed
to be important that simulated dynamics are close to the
real ones to enable a successful sim to real transfer. There-
fore, we performed a special type of system identification,
where we run actions on the real robot and tried to change
parameters in simulation to make trajectories as similar to
the real trajectories as possible. We used the CMA-ES [8]
algorithm to change the gravity, link masses and joint damping
simulation parameters and let them optimize to minimize
the 2-norm (

∑n
i=1(vi)

2)
1
2 where v are three end effector

positions. Fig. 2 shows the real and simulated trajectory before
the system identification and afterwards. The trajectory after
the identification is much closer to the real trajectory.

IV. EVALUATION AND FUTURE WORK

We evaluated the possibility of learning a peg in hole task
in simulation and transferring it to a real robot. Simulation
and OSC run in 5ms steps, while the learning module runs
with 160ms. Training in simulation works very well in our

Fig. 3: Effect of network architecture and randomization

experiments with a final performance of nearly 100%. As
we give a bonus of 50 after a successful insertion, we can
see the performance rising in Fig. 3 around epoch 150, when
the robot starts succeeding in most trials. Also, the effect of
environment and parameter randomization can be observed.
The randomization makes the task more difficult and also
finally a bit more unstable. Compared to [4] we can’t observe
a positive effect when using a recurrent architecture. When
transferring the policy to the real robot without further fine-
tuning we got a performance of 20 successful out of 20 tried
insertions. The policy was also robust to manual perturbations
of the robot like pushing it away from the target. Compared
to the simulation, the real-world trajectory was slower with
inserting, because it searches quite some time for the hole.
In our future work we plan to investigate the possibilities
of using sim to real transfer on industrial peg in hole tasks
where the insertion tolerance is in the sub-millimeter range.
In our view tasks that involve contact are the most interesting
class of problems for applying RL. With today’s industrial
robots, force sensitive tasks require a large amount of expert
knowledge to program and a big amount of time for fine tuning
it to specific applications. Nevertheless, very often those tasks
with friction, soft objects or snap-in events are also inherently
difficult to simulate and we therefore want to see if solving
them is possible with sophisticated simulation environments
and what parts need to be fine-tuned on the real robot.
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