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Fig. 1. The sim2morph2real pipeline. A goal behavior is supplied to the pipeline, such as forward travel (dotted arrow in a). A simulation of the
robot’s environment is then created (b), after which an optimization method automatically designs a simulated soft robot to achieve that behavior in that
environment (c). It is then transferred to reality (d). If a new environment is added (e), a new shape and behavior is automatically designed for the robot in
that environment (f) as well as a control policy that morphs the original shape into the new shape (g). The morphing plan and new controller are then sent
to the physical robot (h).

Abstract—Soft robots provide a unique capability over rigid
machines: the ability to continuously change their shape on
demand. As demonstrated by organisms capable of shape change,
this behavior has several desirable properties, including the
ability to enter and operate in a wider range of environments,
or manipulate objects with greater delicacy than a fixed-shape
organism can. Introducing shape as a control variable leads to
a rich yet complicated range of configurations, opening up a
wide range of possibilities for multi-functional, shape-changing
robots. Here, we present a target pipeline for the automatic design
of soft-bodied, shape-changing robots to accomplish an input
task, such as locomotion or grasping. We demonstrate working
aspects of such a pipeline as we attempt sim2real transfer of
morphing robots. In this context, we explore the current role of
simulation, shortcomings of current soft robot simulators, and
discuss methods for overcoming such shortcomings.

I. INTRODUCTION

The emerging field of soft robotics holds promise for
realizing machines capable of altering their shape to per-
form in changing environments. Shape change has allowed
robots to grasp complex objects [4], recover from extreme
structural damage [12], deliver temporary drug implants [20];

and successfully navigate below low-hanging barriers [18],
over surface obstacles [17], through small apertures [6], and
in challenging domains such as arboreal and underground
environments [19]. Collectively, this work shows how shape-
change allows robots to adapt their functionality to meet
changing circumstances, and potentially mitigate some of
the complications of controller adaptation (e.g., catastrophic
forgetting; [15, 16]), for applications including locomotion,
human-robot interaction, and object manipulation.

However, manually determining an effective shape and
controller for a given environment, and how to transition to
another shape when the environment changes, is extremely
challenging in both simulation and in hardware [7]. To address
this limitation, we propose a pipeline that integrates advances
in simulation, optimization, simulation-to-reality transfer, and
physical soft robots to automate the design and manufacture
of metamorphosing machines. This pipeline takes as input a
desired goal state and target environments, and then automat-
ically designs shapes, the transformations between them, and
behaviors for each shape (Fig. 1). Importantly, this method au-



tomatically determines which shape/behavior pairs are appro-
priate for which environment. This is accomplished by training
a variety of soft robots in different environments, select-
ing successful shape/environment combinations, and seeking
transformations between all of those shapes. If transformations
between all shapes can be be found, those shape/behavior
pairs are output as instructions to the metamorphosing physical
machine.

II. DISCUSSION

The capabilities of such a pipeline are inextricably tied
to the chosen simulator. Particularly important for soft robot
simulation is the trade-off between accurately modeling large
continuum deformations, and using a more computationally-
efficient finite-element implementation to allow a greater num-
ber of simulations to be run. Current simulators for soft bodies
are generally focused on specific tasks or specific robots.
This works well for applications where there is a well-defined
morphology. However, there are very few simulators which
natively enable automatic design of dynamic soft robots’
physical bodies [13].

One such simulator is the soft-bodied physics engine, Vox-
elyze, better known by its corresponding graphical interface:
VoxCAD [9], which has been used in many other soft robotics
experiments [5, 7, 8, 12]. In this work, we used VoxCad due to
its ability to simulate robots of a wide range of shapes with an
API that is ideal for interfacing with optimization algorithms
for automated design [1].

As a first test of the approach, we attempted to make a
robot which operated (locomoted) in two highly dissimilar
environments: a flat plane (Fig. 1b) and an 10◦ inclined
plane (Fig. 1e). In this “toy case,” we sought to evaluate the
suitability of the simulator for morphing and sim2real transfer,
since the optimization portions of the pipeline are more
established [7, 12]. Evolutionary algorithms are particularly
well-suited to optimize shapes (in addition to their controllers)
that are well-adapted to complicated environments or difficult
manipulation tasks [3].

An elliptical cylinder (Fig. 1d) was manually chosen as the
first target shape for the flat environment, and was manually
flattened (Fig. 1g) into a second shape (Fig. 1h) to attack the
incline. Simulated robots are composed of voxels—cubic finite
elements that can expand and contract while obeying given
physical properties—which are here constrained to mirror the
(morphable) hardware of the real robot: eight, translucent
pneumatic actuators wrapped around a green, inflatable core.

While attainable in hardware, no solution was found to
transition the robot from an cylindrical to the flat shape
(Fig. 1g). This transition essentially corresponds to nearly
complete shrinkage along a single dimension—collapsing a
3D robot into a 2D shape. Soft body simulators are generally
not equipped to natively handle these types of anisotropic tran-
sitions, even though many dramatic changes of functionality
occur during such large-strain transitions.

To test other aspects of the pipeline, we temporarily
sidestepped this limitation and hand designed two separate

shapes: a flat robot, and a separate cylindrical robot. In
preparation for the sim2real attempt, as in [14], the robots
were restricted to sufficiently slow quasistatic gaits, in which
the robot remains over its polygon of support at all times
(i.e., no jumping or bounding gaits). Controllers were evolved
for each simulated robot, and the robots indeed developed
specialized functionality. The cylindrical robot evolved rapid
rolling gaits for the flat terrain but was unable to roll up the
hill. Meanwhile, the flat robot developed an inchworm gait
which performed moderately well in both terrains. Thus, the
ideal robot could normally locomote by rolling, and, when
necessary, transition to a flat shape to inch up an incline.

The next step in the pipeline that we tested was sim2real.
Due to the quasistatic nature of the controllers, the gait
found for the inflated cylinder robot successfully transferred
to reality, producing very similar behavior.

For the flat robot, the optimization algorithm found an inch-
worm motion. However, this did not properly transfer to reality
due to differences in friction responses. Not only is there the
typical error due to simulating Coulomb friction between two
materials, but the friction coefficient can even change while
the robot is at rest. In other words, the robot tends to stick to
the ground when left motionless. Methods that may be best
suited to overcome these types of problems include improving
simulation, but will likely require approaches that attempt to
increase the robustness of robot behaviors across change, such
as adding noise to certain aspects of the environment [10].

Approaches for robustness also come with their own dif-
ficulties and hand-designed features. One way to fix this,
which is especially enticing for a design pipeline with real-
to-sim feedback, includes improving a simulator based on
data intelligently gathered from reality [2]. This could also
include automatically tuning noise envelopes. In the particular
problem of friction one could imagine gathering real friction
data on a soft robot and feeding that back into the simulator
to update friction coefficients adding uncertainty (noise) in the
simulation as part of it’s optimization.

In our preliminary instantiation of the pipeline here, the
robot and its environments are intuitive: we can imagine—and
even hand design—effective resting shapes and controllers.
However, competency in this toy example implies that given an
arbitrary physical substrate, environment, and goal behavior,
a pipeline could be optimized to discover resting geometries
and controllers (and the settings of other adjustable attributes
such as material stiffness [11]) that are novel and non-intuitive.
Thus, although we only considered locomotion, the pipeline
could equally be applied to shapeshifting robots in other
domains such as the manipulation of novel, complex objects.
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