vision2tactile: Feeling Touch by Sight

1% Brayan S. Zapata-Impata
AUROVA Lab
University of Alicante
Alicante, Spain
brayan.impata@ua.es

Abstract—Latest trends in robotic grasping combine vision
and touch for improving the performance of systems at tasks
like stability prediction. However, tactile data are only available
during the grasp, limiting the set of scenarios in which multi-
modal solutions can be applied. Could we obtain it prior to
grasping? We explore the use of visual perception as a stimulus
for generating tactile data so the robotic system can feel” the
response of the tactile perception just by looking at the object.

I. INTRODUCTION

Whenever we humans grasp objects, both visual and tactile
perception play a paramount role: vision provides us informa-
tion of the object like its geometry and touch lets us discover
its stiffness, among other properties. As avid learners, we can
estimate physical properties of novel objects just by looking at
them. It is argued [3] that our brain builds statistical generative
models, which capture the visual attributes of textures or
materials, so we can predict how a surface would feel if we
touch it. In this fashion, we explore how a robot could learn to
model its tactile sense using visual perception, so that it can
estimate the tactile response of its sensors. More precisely, we
aim to generate the tactile data that would be registered if the
robot grasps an object, given a 3D point cloud of it.

Previous works have shown the importance of tactile percep-
tion in robotic grasping. Calandra et al. [1] trained a CNN with
both tactile and visual images in order to predict grasp success.
Regrasp has been recently approached using simulated tactile
data as well [4], mapping generated tactile images into actions
of the robotic gripper. However, their systems needed to grasp
the object in order to obtain a tactile image. Recently, Lee et
al. [5] trained a cross-modal generative model that produced
tactile images from real visual images of textures and vice
versa. Our work is similar to this one, but with significant
differences: 1) we use tactile sensors that record signals instead
of tactile images so our data are of different kind, 2) our input
is also of a different type (3D point cloud), and 3) we have
recorded a dataset of real grasps with visual and tactile data.

II. ROBOTIC SYSTEM

In our setting, we use the BioTac SP tactile sensor developed
by SynTouch. It holds 24 electrodes distributed throughout
its internal core, which record signals from 4 emitters and
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measure the impedance in the fluid located between them and
the elastic skin of the sensor. As a result, the greater the
pressure, the lower the voltage readings of the electrodes. In
addition, the sensor provides a global pressure measurement
using a sensor in its base. We work with two BioTac SP
sensors installed on a Shadow Dexterous Hand (middle finger
and thumb). Besides, we use the Intel RealSense D415 depth
camera, that records dense 3D point clouds, fixed in the world
in an eye-to-hand configuration.

III. TOUCH MODELLING

We propose to model the BioTac SP tactile sensors using
visual perception and deep neural networks. In detail, a 3D
point cloud of the object to be grasped is fed to a network,
which outputs the tactile readings that would be registered if
the grasp was performed. We identify three key questions: A)
how should we represent the object? B) what should be the
output of the network? and C) what should be the architecture
of such network that will model the sensor’s behaviour?

A. Visual Representation

For representing the object, we propose 3D point clouds.
This structure represents the geometry of the object, which
could be useful for modelling the tactile response. Besides,
we segment the object from the background so the cloud C =
{p1,p2,...,pn} only holds points that belong to the object.
Moreover, only their 3D coordinates p; = (z,y, z) are used.

B. Tactile Responses

Two levels of difficulty are identified for this task: in the
simpler version of the task, the system has to learn to generate
the global pressure value, called DC pressure or PDC.
Therefore, it must regress two values: PDCyp,y and PDCyy,
one for each sensor. In the more complex version, it has to
learn to generate the readings for each of the 24 electrodes.
As a result, it must learn to regress 24 values for each sensor:
Em,f = {61, €2,y .uuy 624} and Eth = {61, €2,y .uuy 624}.

C. Network Architecture

We propose the use of a network based on PointNet [7] for
calculating deep features from the 3D point clouds and use
them for regressing tactile readings. Since point clouds can
have different sizes, we downsample them to 500 points and
normalise their coordinates to the unit sphere with centre at



the point cloud’s centroid. As for tactile responses, they are
scaled from their discrete values to the continuous range [0, 1].
These normalisation were necessary for convergence reasons.

IV. DATA COLLECTION

In order to train such a network, we needed to record
a dataset of real grasps. Grasps were executed with the
Shadow Hand mounted on a Mitsubishi PA10 robotic arm.
We used GeoGrasp [8] for computing grasping points on
the 3D point clouds. From every grasp, we saved the 3D
point cloud of the object and the tactile readings experi-
enced at the moment of contact, so a sample is a tuple
S = (C,PDCy,;, PDCyp, Epy, Eyp,). The robotic fingers
were closed so they would contact the object on the computed
grasping points applying sufficient force but without exceeding
the torque limits of the joints. In consequence, we have
recorded a set of grasps with different tactile responses. Grasps
were executed on a set of objects from the YCB object set [2].
We used two cylinder-like objects (can of crisps and can of
coffee) and two box-like objects (snacks box and sugar box),
executing 50 grasps per object!.

V. EXPERIMENTS

As can be seen in Figure 1, the range of values of the sensors
are different: the sensor on the middle finger does not exceed
values above 2000 — these are custom units used by the BioTac
SP sensor — while the thumb’s sensor is always over that.
Due to construction reasons, the sensors behave differently
under the same conditions. Hence, we trained one network for
each sensor, though sharing architecture and hyper-parameters.
Networks were trained optimising the Root Mean Squared
Error (RMSE) and 5-fold cross-validation was carried out.
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Fig. 1. Distribution of (top) PDCy, ¢ and (bottom) P DCY;, for two objects.

A. Regressing Global Pressure

Training on the cylinder-like objects yielded an average
RMSE of 0.076 and 0.067 for PDC,,; and PDC}, re-
spectively. Scaling those errors back to the sensors’ range,
they equal 153 and 208 units. Similarly, training on box-like
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objects, the errors are 0.081 (164 units) and 0.089 (278 units)
for each sensor. This shows that it is possible to learn to regress
PDC using PointNet. However, the error is still large, just
as large as the range of values for each of the sensors (see
ranges in Figure 1). Finally, training with one type of object
and testing on the other kept the mean error at 165 and 236.

B. Regressing Electrodes Readings

In this case, training on cylinder-like objects yielded an
average RMSE of 0.060 (231 units) and 0.061 (216 units)
for E,,; and E}j. Training on box-like objects, we obtained
errors equal to 0.055 (212 units) and 0.066 (232 units). As
expected, the errors are higher since the network had to learn to
regress more values. This tendency was more evident training
the system with one type of object and testing on the other:
the average errors rose to 310 and 317 points for each sensor.

VI. DISCUSSION AND OPEN OPPORTUNITIES

Visual perception is currently being simulated for learning
manipulation policies that can be transferred to real systems
[6]. With this work, we aim to give a rich source of information
to those agents because tactile perception should be paramount
for learning manipulation skills. 3D point clouds could be
generated from synthetic depth images and then fed to our
system for regressing a tactile response. Therefore, it would
act as a simulation of the sensor created with real data.

In future lines, we want to test further the performance
of our proposal on objects with more diverse geometries
and degrees of stiffness. Moreover, we would like to test its
behaviour with synthetic 3D point clouds. In addition, we
want to compare it against a GAN-based approach, given their
excellent performance at similar tasks [5] and the inspiration
found in the way our brain builds visual models [3].
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