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● Learning Vision Based Grasping 

○ Self-Supervised Learning

○ Deep Reinforcement Learning

● Improving Data Efficiency

○ With Sim-to-Real 

○ With Sim-to-Sim

● Learning New Tasks

● Learning New Object Representation

Outline
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Learning Vision Based Grasping with 
Self-Supervised Learning
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“Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection”, 

Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, Deirdre Quillen 
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Goal: Learn to grasp arbitrary objects

● RGB monocular camera input
● Camera positioned “over the shoulder”
● Poor / non-existent camera calibration

Assumptions:
● Overhead grasps

Reward function:
● Gripper angle
● Image subtraction
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http://www.youtube.com/watch?v=iaF43Ze1oeI
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1,100 objects used for training
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● Inference using Cross-Entropy Method (CEM)
● Replan every 300 to 500ms
● Hand-eye coordination
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Grasp Success Prediction Model

Grasp Prediction Loss

Real World Grasping Data

Initial Image Current Image Motor Command
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http://www.youtube.com/watch?v=l8zKZLqkfII&t=35
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Grasp Success Rates with Increasing Amounts of Data
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Two Directions for Improvement

● Break the ceiling of the grasp success rate to make it close to 100%.

● Improve real world data efficiency and reduce the data collection time.
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Learning Vision Based Grasping with Deep 
Reinforcement Learning
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“QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation”, 

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre Quillen, Ethan Holly, 

Mrinal Kalakrishnan, Vincent Vanhoucke, Sergey Levine 
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Q Learning for Grasping

● Supervised learning

○ Optimize for the next step

● Reinforcement learning

○ Predict a few steps ahead
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Replay Buffersoff-policy

on-policy

train

Training Worker

Offline data 580K 
grasps

Model weights

Bellman Updater

Cross Entropy Method

Replay buffers
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Q Learning for Grasping: QT-OPT
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Q Network: Action Space Includes Open/Close Gripper and Termination
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Grasping Value 
Function Q(s, a)

Real World Grasping Data

Initial Image Current Image Motor Command Gripper 
Open/Close

Episode 
Terminate
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https://docs.google.com/file/d/19SBJNndspsI2A7R4MwpEdedBHRZLbofT/preview
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QT-Opt achieves 96% grasp success, with higher data efficiency
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less data,
78% -> 96% grasp success



X: The Moonshot FactoryCopyright 2019 X Development LLC

—
3
Leveraging Sim-to-Real for Data Efficiency
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“Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping”, 

Konstantinos Bousmalis, Alex Irpan, Paul Wohlhart, Yunfei Bai, Matthew Kelcey, Mrinal Kalakrishnan, Laura Downs, 

Julian Ibarz, Peter Pastor, Kurt Konolige, Sergey Levine, Vincent Vanhoucke 
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Motivation for Using Simulation

18

● 608,000 real-world grasps to achieve best 
performance
○ 7 KUKA robots running for 2-3 months

● Use simulation!
○ Easy to parallelize, reset, safe exploration, access 

to ground-truth for exploration policy, …
Real world Simulation
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Real world

Simulation

Dynamic model 
discrepancy

Uncertain
environment

Erroneous
sensing

Numerical
error

Latency

Others

Reality Gap
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 System Identification Use statistical methods to build mathematical models of 
dynamical systems from measured data.

Methods for Sim-to-Real Transfer

Domain Randomization

Feature-level Domain Adaptation

Pixel-level Domain Adaptation

Vary texture, background, lighting, color, object shape, and 
dynamics in simulation.

Train features to be domain-invariant yet expressive, by using 
an adversarial loss.

Train a generator network that converts simulated images to 
real images, by using an adversarial loss.

20
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realsim

reality gap

Sim-to-Real Transfer for Physics - System Identification
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sim real

Sim-to-Real Transfer for Physics - System Identification
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sim real

Sim-to-Real Transfer for Perception - Domain Randomization
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● 51,300 object models from 
ShapeNet.

Chang et al., CoRR 2015
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● 1,000 procedurally 
generated object models.
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● Procedural objects with 
random textures.
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Adversarial
Loss

Domain Classifier

Grasp Prediction Loss

Grasp Prediction Loss

Real World Grasping Data

Initial Image Current Image Motor Command

Simulated Grasping Data

Initial Image Current Image Motor Command

● Domain Adversarial Neural Network. Train features to be domain-invariant yet expressive, 
by using an adversarial loss. Learn features that confuse the domain classifier.

Based on Ganin et al., JMLR 2016

Sim-to-Real Transfer for Perception - Feature Level Domain Adaptation
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● Learn a generator (G) which converts synthetic 
images to real looking (fake) images.

Sim-to-Real Transfer for Perception - Pixel Level Domain Adaptation
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Sim-to-Real Transfer for Perception - Pixel Level Domain Adaptation
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GraspGAN outperforms other techniques, providing more than 50x data efficiency.
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GraspGAN outperforms other techniques, providing more than 50x data efficiency.

2% of the real world data,
same performance
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Solve Sim-to-Real via Sim-to-Sim
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“Sim-to-Real via Sim-to-Sim: Data-efficient Robotic Grasping via Randomized-to-Canonical Adaptation Networks”, 

Stephen James, Paul Wohlhart, Mrinal Kalakrishnan, Dmitry Kalashnikov, Alex Irpan, Julian Ibarz, 

Sergey Levine, Raia Hadsell, Konstantinos Bousmalis 
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Randomized-to-Canonical Adaptation Networks

33

● RCAN is a real-to-sim image translator trained with domain randomization:
○ We define a “canonical” version of simulation and randomizations

canonical

canonical realrandomized
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Randomized-to-Canonical Adaptation Networks

34

● RCAN is a real-to-sim image translator trained with domain randomization:
○ We define a “canonical” version of simulation and randomizations
○ We train a pix2pix model to convert randomized sim images to equivalent 

canonical versions

G

Randomized

D adapted/
canonical

Adapted

Canonical
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Randomized-to-Canonical Adaptation Networks

35

● RCAN is a real-to-sim image translator trained with domain randomization:
○ We define a “canonical” version of simulation and randomizations
○ We train a pix2pix model to convert randomized sim images to equivalent 

canonical versions
○ In the real world, RCAN will then also be able to translate real images to 

canonical sim versions

G

Real Adapted
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Randomized-to-Canonical Adaptation Networks
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https://docs.google.com/file/d/15lhGa7L2Ft3m11-pwVPpUdBcfWGZqWSe/preview
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RCAN achieves the similar success rate (94% vs 96%), but without using 580k real word data 
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No 580k off-policy data,
similar grasp success
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Learning New Tasks
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“Multi-Task Domain Adaptation for Deep Learning of Instance Grasping from Simulation”, 

Kuan Fang, Yunfei Bai, Stefan Hinterstoisser, Silvio Savarese, Mrinal Kalakrishnan
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Sim-to-Real Transfer: Applying to a More Challenging Task

39
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Instance Grasping Framework: Multi-Task Domain Adaptation

Adversarial
Loss

Domain Classifier

Indiscriminate Grasp 
Prediction Loss

Indiscriminate Grasp 
Prediction Loss

Real World Indiscriminate Grasping Data

Initial Image Current Image Motor Command

Simulated Indiscriminate Grasping Data

Initial Image Current Image Motor Command
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Instance Grasping Framework: Multi-Task Domain Adaptation

Adversarial
Loss

Domain Classifier

Indiscriminate Grasp 
Prediction Loss

Indiscriminate Grasp 
Prediction Loss

Real World Indiscriminate Grasping Data

Initial Image Current Image Motor Command

Simulated Indiscriminate Grasping Data

Initial Image Current Image Motor Command

Instance Grasp Prediction 
Loss

Simulated Instance Grasping Data

Initial Image Current Image Target Mask Motor Command
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Instance Grasping Framework: Multi-Task Domain Adaptation

Adversarial
Loss

Domain Classifier

Indiscriminate Grasp 
Prediction Loss

Indiscriminate Grasp 
Prediction Loss

Real World Indiscriminate Grasping Data

Initial Image Current Image Constant Mask Motor Command

Simulated Indiscriminate Grasping Data

Initial Image Current Image Constant Mask Motor Command

Instance Grasp Prediction 
Loss

Simulated Instance Grasping Data

Initial Image Current Image Target Mask Motor Command
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Evaluation in the Real World
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Learning New Object Representation

44

“Data-Efficient Learning for Sim-to-Real Robotic Grasping using Deep Point Cloud Prediction Networks”, 

Xinchen Yan, Mohi Khansari, Jasmine Hsu, Yuanzheng Gong, Yunfei Bai, Soren Pirk, Honglak Lee
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Shape Prediction

visualizations of point clouds generated with our point
prediction network
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Learning to Grasp Using Object Point Cloud

visualizations of point clouds generated with our point
prediction network

Gripper Transform

Interaction 
Outcome

3D Point Cloud 
(camera frame)

3D Point Cloud 
(gripper frame)

Grasping Critic 
Network

46



Copyright 2019 X Development LLC X: The Moonshot Factory

Grasping Evaluations
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Conclusion
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Summary

● Learn vision based grasping through 
self-supervised learning and deep 
reinforcement learning.

● Simulation helps reduce real world data 
requirements by 100x, by solving sim-to-real 
transfer and sim-to-sim transfer.

● Simulation also enables us to learn new related 
tasks, and good object representation can 
facilitate sim-to-real transfer.
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1. Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data 
Collection
S. Levine et al.  IJRR 2017.

2. QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation
D. Kalashnikov et al. CoRL 2018.

3. Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping
K. Bousmalis et al. ICRA 2018.

4. Sim-to-Real via Sim-to-Sim: Data-efficient Robotic Grasping via Randomized-to-Canonical 
Adaptation Networks
S. James et al. CVPR 2019.

5. Multi-Task Domain Adaptation for Deep Learning of Instance Grasping from Simulation
K. Fang et al. ICRA 2018.

6. Data-Efficient Learning for Sim-to-Real Robotic Grasping using Deep Point Cloud Prediction 
Networks
Under review
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—
Thank you!

Yunfei Bai
yunfeibai@google.com
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http://www.youtube.com/watch?v=c57fh_a9k6M

