

Learning to Adapt to Dynamic, Real-World Environments Chelsea Finn

BERKELEY ARTIFICIAL INTELLIGENCE RESEARCH

Photorealistic simulators

The real world is unmatched. **Unmatched** *diversity* rich, *multi-agent* interactions in terms of: fidelity messiness Real world will always require some amount of adaptation.

Can robots learn something from *simulation* that can help them **adapt** quickly?

from other data

Quick primer on **few-shot meta-learning**

Challenges in applications to robotics:

Meta-learning across families of manipulation tasks

- Can robots learn something from *simulation* that can help them **adapt** *quickly*?
 - from *past* experience
 - Adaptability is important, regardless of whether you are using simulation.

$$\begin{array}{ccc} & \Psi_{\phi}(\mathbf{z}|\mathbf{c}_{1}) \\ & \vdots & \chi \\ & & \vdots & \chi \\ & \Psi_{\phi}(\mathbf{z}|\mathbf{c}_{N}) \end{array} \end{array}$$

Rapid, online adaptation to drastic changes in dynamics

Example: Few-Shot Image Classification

5-way, 1-shot image classification (Minilmagenet) Given 1 example of 5 classes:

Can replace image classification with: regression, reinforcement learning, any ML problem

Classify new examples

Example: Fast Reinforcement Learning Given a small amount of experience Learn to solve a task

By learning how to learn many other tasks:

• • •

diagram adapted from Duan et al. '17

The Meta-Learning Problem: The Mechanistic View Data: $\{(\mathbf{x}, \mathbf{y})_i\}$ Data: Outputs: **y**_{test} $\{\mathcal{D}_i\}$ $\mathcal{D}_i: \{(\mathbf{x}, \mathbf{y})_j\}$

Why is this view useful? Reduces the problem to the design & optimization of f.

Meta-Learning for Few-Shot Learning

Recurrent network (LSTM, NTM, Conv)

Andrychowicz et al. '16

Vinyals et al. '16 Snell et al. '17

Santoro et al. '16, Duan et al. '17, Wang et al. '17, Munkhdalai & Yu '17, Mishra et al. '17, ...

- + expressive, general
- + applicable to range of problems
- complex model for complex task of learning
- often large data requirements for meta-training

Model-Agnostic Meta-Learning

Key idea: Train over many tasks, to learn parameter vector θ that transfers

Finn, Abbeel, Levine. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. ICML'17

task i

Can we learn a representation under which RL is fast and efficient?

two tasks: running backward, running forward

Finn, Abbeel, Levine. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. ICML'17

The Efficiency Challenge with Meta-RL

but how long did it take to **meta-train**?

100s of millions of steps

(about one month if it was in real time...)

PEARL: Sample-Efficient Meta-RL

Rakelly*, Zhou*, Quillen, Finn, Levine. Efficient Off-Policy Meta-Reinforcement learning via Probabilistic Context Variables

PEARL: Sample-Efficient Meta-RL

Rakelly*, Zhou*, Quillen, Finn, Levine. Efficient Off-Policy Meta-Reinforcement learning via Probabilistic Context Variables

How does it work?

Idea 1: use stochastic latent context to represent task-relevant knowledge

Rakelly*, Zhou*, Quillen, Finn, Levine. Efficient Off-Policy Meta-Reinforcement learning via Probabilistic Context Variables

(turns out to be crucial for exploration)

How does it work?

Idea 1: use stochastic latent context to represent task-relevant knowledge

Idea 2: use efficient off-policy model-free RL for meta-training

Rakelly*, Zhou*, Quillen, Finn, Levine. Efficient Off-Policy Meta-Reinforcement learning via Probabilistic Context Variables

meta-train with soft actor-critic (SAC), state-of-the-art off-policy RL method

Can robots learn something that can help them adapt quickly?

Challenges in applications to robotics:

Meta-learning across families of manipulation tasks

Primer on few-shot meta-learning

Rapid, online adaptation to drastic changes in dynamics

Can robots learn something that can help them adapt quickly?

Challenges in applications to robotics:

Meta-learning across families of manipulation tasks

tion
$$\Psi_{\phi}(\mathbf{z}|\mathbf{c}_{1})$$
 $q_{\phi}(\mathbf{z}|\mathbf{c})$
 \vdots $\times \rightarrow$
 $\Psi_{\phi}(\mathbf{z}|\mathbf{c}_{N})^{\uparrow}$

Primer on few-shot meta-learning

Rapid, online adaptation to drastic changes in dynamics

Can we meta-learn across task families? Space of manipulation tasks

Goal: Learn a new variation of one of these task families with a small number of trials & sparse rewards

Problem: Robot will have to explore **every possible task**.

This work: Can we learn from **one demonstration** & **a few trials**?

Zhao, Jang, Kappler, Herzog, Khansari, Bai, Kalakrishnan, Levine, Finn. Watch-Try-Learn. '19

- grasping objects
- pressing buttons
- sliding objects
- stacking two objects

(to convey the task) (to figure out how to solve it)

Can we learn from one demonstration & a few trials?

Watch one task demonstration

- 1. Collect a **few** demonstrations for **many** different tasks
- 2. Train a **one-shot imitation learning** policy.
- 3. Collect trials for each task by running one-shot imitation policy.

4. Train "re-trial" policy through imitation objective.

Zhao, Jang, Kappler, Herzog, Khansari, Bai, Kalakrishnan, Levine, Finn. Watch-Try-Learn. '19

Try task in new situation

Learn from demo & trial to solve task

How can we train for this in a scalable way?

[batch off-policy collection]

 \mathcal{D}_{train} : demo + trial(s)

Experiments

Compare:

only trials or only demos

Reinforcement learning from **BC initialization** requires **900 trials** to match performance of WTL.

- Watch-Try-Learn (one trial + one demo) meta-reinforcement learning (only use trials) meta imitation learning (only use demonstration) **behavior cloning** across all tasks (no meta-learning)

Can robots learn something that can help them adapt quickly?

Primer on few-shot meta-learning

Challenges in applications to robotics:

Meta-learning across families of manipulation tasks

tion
$$\Psi_{\phi}(\mathbf{z}|\mathbf{c}_{1})$$
 $q_{\phi}(\mathbf{z}|\mathbf{c})$
 \vdots $\times \rightarrow$
 $\Psi_{\phi}(\mathbf{z}|\mathbf{c}_{N})^{\downarrow}$

Rapid, *online* adaptation to drastic changes in dynamics

Goal: learn to adapt model quickly to new environments

Nagabandi*, Clavera*, Liu, Fearing, Abbeel, Levine, Finn. Learning to Adapt in Dynamic Real-World Environments through Meta-RL

Goal: learn to adapt model quickly to new environments

Nagabandi*, Clavera*, Liu, Fearing, Abbeel, Levine, Finn. Learning to Adapt in Dynamic Real-World Environments via Meta-RL. ICLR'19

online adaptation = few-shot learning tasks are temporal slices of experience

Nagabandi*, Clavera*, Liu, Fearing, Abbeel, Levine, Finn. Learning to Adapt in Dynamic Environments through Meta-RL. ICLR'19

VelociRoACH Robot

Meta-train on variable terrains

Meta-test with slope, missing leg, payload, calibration errors

Nagabandi*, Clavera*, Liu, Fearing, Abbeel, Levine, Finn. Learning to Adapt in Dynamic Environments through Meta-RL. ICLR'19

Meta-test with slope, missing leg, payload, calibration errors

VelociRoACH Robot Meta-train on variable terrains

model-based RL (no adaptation)

Contraction of the second

with **MAML (ours)**

VelociRoACH Robot Meta-train on variable terrains Meta-test with slope, missing leg, payload, calibration errors

model-based RL (no adaptation)

Nagabandi*, Clavera*, Liu, Fearing, Abbeel, Levine, Finn. Learning to Adapt in Dynamic Environments through Meta-RL. ICLR'19

with **MAML (ours)**

Quick primer on **few-shot meta-learning** (and it's extension to RL)

Challenges in applications to robotics:

Adapt to new vision-based manipulation task from only 1 demo & 1 trial

Key takeaway: Leverage previous data to optimize for fast adaptation

Can robots learn something that can help them adapt quickly?

 $\Psi_{\phi}(\mathbf{z}|\mathbf{c}_1$ $q_{\phi}(\mathbf{z}|\mathbf{c})$ $\Psi_{\phi}(\mathbf{z}|\mathbf{c}_N)$

Adapt online to drastic changes in dynamics

What is simulators **useful** for: What it is **not useful** for: autonomous learning without human expertise algorithm development **better performance** in the long run (3+ yrs) short-horizon wins (~3 yr)

K

iterate

Typical sim2real pipeline:

- 1. Identify real task
- 2. Hand design a simulator and/or randomization parameters for that task
- 3. Optimize for behavior in sim.
- 4. Try out behavior in the real world.

Computer vision: design better features? Go: incorporate human gameplay? Machine translation: incorporate grammar?

Closing Thoughts on Simulation to Real-World Transfer

Defeats the point of **reinforcement learning**! (the *autonomous* acquisition of a breadth of skills)

- Sim2Real Counterargument: We will design better and better simulators of the world
 - Learning from data is what **consistently wins**.

Collaborators & Students

Kate Rakelly Deirdre Quillen Aurick Zhou Sergey Levine

Papers, data, and code linked at: people.eecs.berkeley.edu/~cbfinn

Pieter Abbeel Anusha Nagabandi Ignasi Clavera

Questions?

Simin Liu