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Online adaptation is a major “learning problem” of robotics
... more important that controller design / synthesis (?)

-

The issue with current robots is not that they fail...

T ... It Is that they do not get back on their feet and try again

Our Atlas Robot had mean time between failures of hours or; at most, days [...]
Behaviors that worked perfectly and robustly in the team’s labs did not work or were erratic

when tested on an “identical” setup at a DARPA test site.
— C. Atkeson et al. (2018). What Happened at the DARPA Robotics Challenge Finals. In

The DARPA Robotics Challenge Finals: Humanoid Robots To The Rescue. Springer. , , 3



Reality gap & online adaptation / damage recovery

We know models of the intact robot in a nominal environment (simulator)

We do not know the change / damage

We need to adapt quickly to a change (e.g.,a damage)
... while minimising the number of episodes on the robot

= |f we can “solve” the reality gap problem, we might solve the
adaptation problem

= we need to cross the reality gap, be data-efficient, and fast

Simulator of the intact robot Real (damaged) robot



Learn on the real robot
(data-efficiently)

Demonstrations
(prior on policy
parameters)

Bayesian
optimisation

® This is never the
full environment

® Only for a few
parameters

Crossing the reality gap

Improve robustness
of policies

Domain

randomization Meta-learning

Distribution of possible
differences between
simulation and reality?

Improve simulators
(models)

Model-based
policy search

Model
identification

® When is it easier to
learn a simulator than
a policy!?

® Need to wait between
episodes

Combinations are possible (and useful!)

Chatzilygeroudis, K., Vassiliades, V., Stulp, F,, Calinon, S., & Mouret, J. B. (2018). A survey on policy search
algorithms for learning robot controllers in a handful of trials. arXiv preprint arXiv:1807.02303.



Crossing the reality gap

Learn on the Improve Improve Learn the
real robot robustness simulators | transferability
of policies (models) ‘ function

simulation (known) Transferability hypothesis: some controllers will work
[ similarly in simulation and in reality
Q
= Transferability approach
g - learn a model that predicts the transferability score
S ~ learn the limits of the simulation
“GC) » search for a policy with a good reward and a good score
o
Why?
‘ real (unknown) - transferability easier to learn that the dynamics
..... behavior » == know something is wrong vs knowing the correct
answer

) @===p- . |carn a constraint (no crazy predictions)

without the with the
broken part(s) broken part(s)

Koos, S., J.-B. Mouret, and S. Doncieux. "The transferability approach: Crossing the reality gap in evolutionary
robotics." IEEE Transactions on Evolutionary Computation 17.1 (2013): 122-145. 6



The transferability  pErEEie FEEG
approach

MOEA

Population maximize

—_— e
Transf(x)
Fithess(x)

Fitness according to the simulation

Maximize reward

How can we adapt faster and with embedded hardware?

\, Vi S~ \ o
- \\\ ] l : \/\r,
\;’/\T{ = A -\\'

|5 transfers (motion capture)
... but a lot of computation between episodes (several minutes)

Koos, S., Cully, A., & Mouret, J. B. (2013). Fast damage recovery in robotics with the T-Resilience algorithm. The
International Journal of Robotics Research, 32(14), 1700-1723.

Koos, S., Mouret, J.-B., & Doncieux, S. (2011). The Transferability Approach : Crossing the Reality Gap in Evolutionary
Robotics. IEEE Transaction on Evolutionary Computation. 7



Adaptation to sudden changes in nature

Millions of years ago (mya)
" 540 490 445 415 360 300 250 200 145 65 1.8 0.0

[Cambrian| Ordovician [ilurian(Devonian|  Carboniferous | Permian |[Triassic| Jurassic Cretaceous | Tertiary Quaternary

Bar width
represents
number of
living

Diversity is preparing for the future “reality gaps”

| |
Extinction Extinction Extinction Extinction Extinction

} Y

Groups
.x el:i encna | Ordovician: 50% of animal Cretaceous: 50% of animal families,
P 9 families, including many including the last of the dinosaurs and
s trilobites. many marine species.
extinction

Devonian: 30% of animal families, Triassic: 35% of animal families,
including many fish and trilobites. including many reptiles.

many marine species, insects, amphibians,

Permian: 60% of animal families, including
and all remaining trilobites.

Figure 19-8 Discover Biology 3/e
© 2006 W.W. Norton & Company, Inc.




Generating species: The MAP-Elites algorithm

Multi-dimensional Archive of Phenotypic Elites: Quality Diversity / illumination algorithm

A

Random
. Development
—» genetic —» .
e & Evaluation
variation
Selection qf Nlc_he | Competion
a random elite determination

‘0 '
‘0
*

M, = max perf(x)

xEBi(S)

Mouret, J.-B., and J. Clune. (2015) "llluminating search
spaces by mapping elites.” arXiv preprint arXiv:1504.04909



MAP-Elites: 6-legged locomotion




MAP-Elites: 6-legged locomotion




MAP-Elites: 6-legged locomotion

e o]

Frequently uses all legs




Intelligent Trial & Error: Map-Elites + BO

The MAP-Elites algorithm generates the search space (prior)
in simulation, with an intact robot
many evaluations [simulation]
“take the needles out of the haystack”
provide an expected performance for the “needles”

Prior-based Bayesian optimization does the online learning
search only among good solutions (“needles”)
trial-and-error
few evaluations [real robot]

Offline: Evolution-based Elite reduction Online: prior-based Bayesian optimization
/\\
/ AN >
A B
Confidence
level
Performance
= Behavioral
0 09 %o 0, C'oo"‘:»o OQOO.O..'_'_C:,_
5|mulat|on “L;\f:egf-/.',;fg?f;;@»f;%'se projection
(undamaged) T
High-dimensional
search space
Diversity Adaptation 13



Adaptation: Bayesian optimization
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- policy : periodical signals (36 parameters)
-____*  No information about the damage

alf Cully, A. and Clune, J. and Tarapore, D. and Mouret, J.-B. (2015). Robots that can adapt like
nimals. Nature. Vol 521 Pages 503-507.
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Joint stuck
at 45°

Walking Speed (m/s)

Default
Behavioral Descriptor

* 4 * *

1

Alternate

1/ Descriptor

"

|

Ye

Cl C2 C3 C4 C5 C6 C1 C3

Adaptation Time
and Number of Trials

0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

Cl C2 C3 C4 C5 C6 C1 GC3

F Adaptation Time
and Number of Trials
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=
5 10
o] |
Joint with a
permanent 0
45° offset Cc1C2C3
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\. [

Typical gait learned in 9 episod]es (intact robot, 10s per episode)

Policy : periodical signals (24 parameters)
No information about the damage

' Dalin, P. Desreumaux, J.-B. Mouret. (2019) Learning and adapting quadruped gaits with the “Intelligent Trial & Error”
| algorithm. ICRA Workshop on “Learning Legged Locomotion”. 17




Recent extension:

Experi ment 1 Unknown damage condition
damage recove I’y 105 priors (15 for each condition)

Reward: walking distance

BO with MLEI acquisition function

Pautrat, R., Chatzilygeroudis, K., & Mouret, J.-B. (2018). Bayesian Optimization with Automatic Prior
Selection for Data-Efficient Direct Policy Search. Proc. of IEEE ICRA. 18



Planning (MCTS) +

-+
c
J]
=
q]
O

-0
o

i
S
x

y displacement

Infour'experniments;a‘6-legged: robot

'ﬂ 3",..

hasito reach a sequence of talrget;s

/ - :-’--. -z\,’j' h %\\

' W

K Chatzilygeroudis, V. Vassiliades, and J.-B. Mouret (2018). Reset-free Trial-and-Error Learning for Data-Efficient
Robot Damage Recovery. Robotics and Autonomous Systems.

19



Real robot / 5 replicates

Performance Environment #1 Damaged Robot

MCTS |

RTE- |

MCTS |

RTE |

10 15 20 25 30 35 40
# of steps per target

| step = 3 seconds

20



Bridging the gap with model-based Policy Search

Transferability function = learning the limits of an existing
simulator

... hot far from a probabilistic model + prior

Gaussian processes
Xi41 = Xg T M(Xt, U, ¢M) -+ f(Xu Uy, ¢K) T W

Simulator / model parameters

Learning = maximize the likelihood of M+f

"+ effects that can be captured by the simulator will be included by tuning
the simulator (model identification)

= effects that cannot be captured by changing the parameters are
modelled by the Gaussian processes

Chatzilygeroudis K, Rama R, Kaushik R, Goepp D, Vassiliades V, Mouret JB. (2017) Black-Box
Data-efficient Policy Search for Robotics. Proc. of IEEE IROS. 21



Model-based

The algorithm policy search
Black-box Data-Efficient Robot Policy Search

l. Perform a few random trials
" new data
2. Learn a probabilistic model of the robot with Gaussian processes:

simulator Gaussian processes

Xt+1 = X¢ + M(Xg, g, @) + [(Xp 0, Q) + W

3. Optimize with CMA-ES a policy that maximizes the long-term reward
according to the model
w one function evaluation = one rollout (propagate by sampling)
w treat each rollout as a measurement of a noisy function
4. Evaluate the policy on the robot
w new data

"Most expensive step:
» benefit a lot from parallelization
» handle uncertainty as noise " domain randomization

Chatzilygeroudis K, Rama R, Kaushik R, Goepp D, Vassiliades V, Mouret JB. (2017) Black-Box
Data-efficient Policy Search for Robotics. Proc. of IEEE IROS. 22



Model-based

Black-DROPS + priors + identification  voiicy searcn

Policy space: 36D

open-loop policy)

Control rate: |0Hz

Prior (tunable black-box simulator):

N —————— -

Xep1 = Xe + M (X, ue, @) + f (%0, W, @) +W probabilistic model

¥ policy

next state”

“w. Simulator / model  Other dynamice~"

Chatzilygeroudis K, Mut ' sng Parameterized Black-Box Priors to Scale Up
Model-Based Policy Search for Robotics. Proc. of ICRA. 23



Conclusions

Adapting to damage is a reality gap problem
. and adaptation is critical for robotics
. we know how to design controllers, but not how to adapt

reality gap

Diversity + Adaptation (IT&E): fast algorithm on the robot, but
limited by the simulator

Model-based Policy Search with prior and uncertainty (Black-
DROPS): slow algorithm but could learn “anything”

24



Conclusions (2)

Simulators are often right (for rigid bodies)!
Simulators are good *priors*

Every simulator (model) prediction should come with a measure of
transferability or uncertainty

this can be learned from data
crowd-source a model for bullet/dart/ode?

1500

We ShOUld map the reality gap o > 1300 (reality) e > 1300 (simu.)
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policy search

Parameters of the policy

Optimize: J(@) =E

Zr(xt) 0

t=1

ObjectivReward for state X

7~ expected return

' dynamics policy /
system
y p(ay 1], wy) r(ul, t, ) \_/(6) =E[R()|6)
Au; A ) SN .
o) 2 -
= S
. IS ¢ -
models P(Tt+1]®e, us, Dy, -+, D) HS S J(0|D1,---,Dy)
model-based policy search §, é § Bayesian optimization
)
1 t
_ p(f) p(m) p(9) p(J)
priors _ _ prior on prior on :
rior on expected return
prior on dynamics S parameters p p

f 1 f f

In nature: evolution & experience

K. Chatzilygeroudis, V. Vassiliades, F. Stulp, S. Calinon, J.-B. Mouret. (2018). A survey on policy search

algorithms for learning robot controllers in a handful of trials. arXiv:1807.02303 -
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Strategy 1: Learning the dynamical model

(\

\

N

Xi41 = X¢ + f(xe,ug) + W

pollcy (in
Proablllstlc the model)

dynamlc nois

Chatzilygeroudis K, Rama R, Kaushlk R Goepp D Vassiliades V, Mouret JB. (2017) Black-Box Data-efficient Policy
Search for Robotics. Proc. of IEEE IROS.
Deisenroth, M. P., Fox, D., & Rasmussen, C. E. (2015). Gaussian processes for data-efficient learning in robotics
and control. I[EEE Transactions on Pattern Analysis and Machine Intelligence, 37(2), 408-423. 29



Model-based

model-based RL with priors eoicysearn

We cannot learn a model of a 6-legged robot
"+ the state space is too large

We can add the simulator as a prior
"+ we |learn a marginal model (residual)

Gaussian processes
Xi+1 = X¢ + M(Xt, Uy, CbM) T f(Xu Uy, ¢K) T W

Simulator / model parameters

Learning = maximize the likelihood of M+f

We can combine model learning and model identification
= effects that can be captured by the simulator will be included by tuning
the simulator (model identification)

" effects that cannot be captured by changing the parameters are
modelled by the Gaussian processes

Chatzilygeroudis K, Mouret JB. (2018) Using Parameterized Black-Box Priors to Scale Up
Model-Based Policy Search for Robotics. Proc. of ICRA. 30



Model-based

Black-DROPS + priors + identification ==

Action space: 18D

Policy space: 36D
(open-loop policy)

Control rate: |10Hz

Prior (tunable black-box simulator):

missing leg

Chatzilygeroudis K, Mouret JB. (2018) Using Parameterized Black-Box Priors to Scale Up

Model-Based Policy Search for Robotics. Proc. of ICRA. 31



Physical 6-legged robot

Black-DROPS with GP-MI IT&E
A. Reality gap B. Rear-leg removal
0.24, 0.25¢
1 0.23}
= 0.20¢
—0.22¢
g 0.15
00.21} '
n
20.207 0.10}
V4
ol 0.05
0.18} 7
0.17 . . . 0.00 . . .
4 16 28 40 4 16 28 40

Interaction time (s)

Chatzilygeroudis K, Mouret JB. (2018) Using Parameterized Black-Box Priors to Scale Up
Model-Based Policy Search for Robotics. Proc. of ICRA.



Conclusions —

- We all want robots that can learn. But why? Is it really needed?

=|_earning in robotics is most useful for online adaptation

»Damage recovery: the “killer app” for robot learning?

... but robots need to learn in a few minutes (micro-data)
= priors: generic for robotics? automatic generation?
= probabilistic models: policies robust to inaccuracies

Amount of

Big-Data » M-data »

Simulated Red trials
world AY@udhinutes

33



need to anticipate possible failures

no need to understand the damage to find a compensatory behaviour
“takes a shortcut”

34



subtitle

Control approach - 1 objective:
covered distance

CORISRRIoach - 1 objective
govered distance

in simulation: 1200 mm in 10 seconds

biblio
35



Policy Search for
"

X dynamics policy
system
p(xir1|Te, wy) m(ulz,t,0)
A A
models p(wt+1|wt7ut7D17”' 7DN) E% (g
5 ©
model-based policy search 5|8 s
A .
1 S :
| p(f) p(m) p(6)
priors , J , prior on prior on
prior on dynamics S parameters

f f f

Model of the intact robot

/N

expected return
J(0) =E [R(‘T)|9]

T

j<0|D17 T 7Dn)
Bayesian optimization

p(J)
prior on expected return

T
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But they can agree (sometimes)!
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BO + MAP-Elites

“Intelligent Trial and Error”

§ M P(f(X)lPle_l\,X) :N(:ut—I-l(X)?O-i?—l—l(x))
& ’ where
] M— ; S e (%) =HAGY+ KK (P — PAGVIR)
Q o7 1(x) = k(x,x) — k'K~ 'k
i k(Y1aY1)+a7210ise k(YbYt) ]
ot K= .
é i k(yt y1) k(ytayt)+ar2Loise _
HE k = [ k(xayl) k(xva) S k(x7Yt) ]
3
o

Cully, A. and Clune, J. and Tarapore, D. and Mouret, J.-B. (2015). Robots that can adapt like animals. Nature.

Vol 521 Pages 503-507.
38



Automatic selection

e Goal: relax the need to have “the right prior”

e Concept:
e (Generate / create many priors (e.g. 100)
 The likelihood of a prior can be computed (prior + obs.)
e Choose after each episode
e prior that is likely given the optimization
e prior that can help the optimization
s trade-off

e New acquisition function: Most likely Expected Improvement

EIP(x,P) = El(x) x P(f(x1.¢) | 1.4, P(x1.4))

MLEI e Pm) = EIP (a2,
(ZE,Pl, 773 ) pEPIIl,-a-J-X,Pm (ZU p)

Pautrat, R., Chatzilygeroudis, K., & Mouret, J. B. (2017). Bayesian Optimization with Automatic Prior
Selection for Data-Efficient Direct Policy Search. arXiv preprint arXiv:1709.06919. 39



Damage recovery

15 priors for 4 environments (stairs) = 60

15 priors for 6 damage conditions + intact = 105
5 iterations

30 replicates

0.40 i !
Q = _ - ==
\E, 0.32 [ | [
5 || = S
$ - I
0 0.24 [ |
0 S
(@)]
C
~ 0.16 | H
© .
=
0.08 _—_—
Hard stairs Medium stairs Easy stairs Medium stairs Flat ground Flat ground
(real stairs (real stairs not (real stairs (real stairs not (real damage (real damage not

among the priors) among the priors) : among the priors) among the priors) ;, among the priors) among the priors)

1 El with random prior [ EI with prior unharmed on flat ground 0 EIl with real prior [ MLEI

Pautrat, R., Chatzilygeroudis, K., & Mouret, J. B. (2017). Bayesian Optimization with Automatic Prior
Selection for Data-Efficient Direct Policy Search. arXiv preprint arXiv:1709.06919.
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Damage recovery

10 episodes / 5 replicates / 15 priors for 6 damage conditions + intact = 105
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the priors the priors

Pautrat, R., Chatzilygeroudis, K., & Mouret, J. B. (2017). Bayesian Optimization with Automatic Prior
Selection for Data-Efficient Direct Policy Search. arXiv preprint arXiv:1709.06919.
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Best cost so far

60

50

40

30

small feet

Cost of CoM Task vs Interaction time

"real” physical world

- 2nd episode
- 3rd episode

Interaction time (s)

model for the controller

0.5

04

0.3

N .2

0.1

Real CoM height trajectory for each episode

episode 5 episode 2

episode 4

pre-learning episode 3

trajectory

(episode 1)

0.5 1 1.5 2 25 3.5 4
Time (s)
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Model for the controller ("QP world")

|
Real world

43



Model-based policy search

The Black-DROPS algorithm / 160 parameters (neural net.)
T 1 B

Chatzilygeroudis K, Rama R, Kaushik R, Goepp D, Vassiliades V, Mouret JB. (2017) Black-Box
Data-efficient Policy Search for Robotics. Proc. of IEEE IROS. 44
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