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The issue with current robots is not that they fail…
… it is that they do not get back on their feet and try again

Online adaptation is a major “learning problem” of robotics 

 … more important that controller design / synthesis (?)

Our Atlas Robot had mean time between failures of hours or, at most, days […]
Behaviors that worked perfectly and robustly in the team’s labs did not work or were erratic 
when tested on an “identical” setup at a DARPA test site.
— C. Atkeson et al. (2018). What Happened at the DARPA Robotics Challenge Finals. In 
The DARPA Robotics Challenge Finals: Humanoid Robots To The Rescue. Springer. 
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Reality gap & online adaptation / damage recovery

• We know models of the intact robot in a nominal environment (simulator)

• We do not know the change / damage

• We need to adapt quickly to a change (e.g., a damage)

… while minimising the number of episodes on the robot

 ➟ If we can “solve” the reality gap problem, we might solve the 

adaptation problem 

 ➟ we need to cross the reality gap, be data-efficient, and fast
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reality gap

Simulator of the intact robot Real (damaged) robot
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of policies

Domain

randomization
Meta-learning

Improve simulators
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Model-based

policy search
Model

identification

Learn on the real robot

(data-efficiently)

Crossing the reality gap

Distribution of possible 
differences between 
simulation and reality?

• When is it easier to 
learn a simulator than 
a policy?

• Need to wait between 
episodes

• This is never the 
full environment

• Only for a few 
parameters

Bayesian

optimisation

Demonstrations
(prior on policy

parameters)

Combinations are possible (and useful!)

Chatzilygeroudis, K., Vassiliades, V., Stulp, F., Calinon, S., & Mouret, J. B. (2018). A survey on policy search 

algorithms for learning robot controllers in a handful of trials. arXiv preprint arXiv:1807.02303.
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Koos, S., J.-B. Mouret, and S. Doncieux. "The transferability approach: Crossing the reality gap in evolutionary 

robotics." IEEE Transactions on Evolutionary Computation 17.1 (2013): 122-145.

Transferability hypothesis: some controllers will work 

similarly in simulation and in reality 

Transferability approach 

• learn a model that predicts the transferability score

~ learn the limits of the simulation

• search for a policy with a good reward and a good score

Why?

• transferability easier to learn that the dynamics

➟ know something is wrong vs knowing the correct 

answer

• learn a constraint (no crazy predictions)
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Koos, S., Cully, A., & Mouret, J. B. (2013). Fast damage recovery in robotics with the T-Resilience algorithm. The 

International Journal of Robotics Research, 32(14), 1700-1723.

Koos, S., Mouret, J.-B., & Doncieux, S. (2011). The Transferability Approach : Crossing the Reality Gap in Evolutionary 

Robotics. IEEE Transaction on Evolutionary Computation.

Maximize reward

15 transfers (motion capture)

… but a lot of computation between episodes (several minutes)

The transferability

approach

How can we adapt faster and with embedded hardware?



Adaptation to sudden changes in nature
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Diversity is preparing for the future “reality gaps” 
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Selection of 

a random elite

Random

genetic

variation

Development 

& Evaluation

Competion

Feature dimension 1 Feature dimension 2

Niche

determination

Mouret, J.-B., and J. Clune. (2015) "Illuminating search 

spaces by mapping elites." arXiv preprint arXiv:1504.04909

Generating species: The MAP-Elites algorithm

Multi-dimensional Archive of Phenotypic Elites: Quality Diversity / illumination algorithm
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MAP-Elites: 6-legged locomotion
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MAP-Elites: 6-legged locomotion
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MAP-Elites: 6-legged locomotion



Intelligent Trial & Error: Map-Elites + BO
The MAP-Elites algorithm generates the search space (prior)

➟ in simulation, with an intact robot
➟ many evaluations [simulation]
➟ “take the needles out of the haystack”
➟ provide an expected performance for the “needles” 

Prior-based Bayesian optimization does the online learning
➟ search only among good solutions (“needles”)
➟ trial-and-error
➟ few evaluations [real robot]
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Diversity Adaptation
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• policy : periodical signals (36 parameters)
• No information about the damage

Cully, A. and Clune, J. and Tarapore, D. and Mouret, J.-B. (2015). Robots that can adapt like 

animals. Nature. Vol 521 Pages 503-507.

Back on its feet
Using an intelligent trial-and-error learning 

algorithm this robot adapts to injury in minutes  
PAGES 426 & 503

INSIGHT
Machine  

intelligence  

T H E  I N T E R N A T I O N A L  W E E K LY  J O U R N A L  O F  S C I E N C E

Adaptation: Bayesian optimization

J(θ) = E
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• Policy : periodical signals (24 parameters)
• No information about the damage

Dalin, P. Desreumaux, J.-B. Mouret. (2019) Learning and adapting quadruped gaits with the “Intelligent Trial & Error” 
algorithm. ICRA Workshop on “Learning Legged Locomotion”.

Back on its feet
Using an intelligent trial-and-error learning 

algorithm this robot adapts to injury in minutes  
PAGES 426 & 503

INSIGHT
Machine  

intelligence  

T H E  I N T E R N A T I O N A L  W E E K LY  J O U R N A L  O F  S C I E N C E
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Recent extension: Multiple priors

Pautrat, R., Chatzilygeroudis, K., & Mouret, J.-B. (2018). Bayesian Optimization with Automatic Prior 

Selection for Data-Efficient Direct Policy Search. Proc. of IEEE ICRA.



Planning (MCTS) + repertoire learning (priors)
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K. Chatzilygeroudis, V. Vassiliades, and J.-B. Mouret (2018). Reset-free Trial-and-Error Learning for Data-Efficient 

Robot Damage Recovery. Robotics and Autonomous Systems.


Action Repertoir

Action Repertoire #1



Real robot / 5 replicates
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Environment #1
Performance Damaged Robot

# of steps per target

Environment #2

1 step = 3 seconds



Bridging the gap with model-based Policy Search

• Transferability function = learning the limits of an existing 
simulator

• … not far from a probabilistic model + prior

!21
Chatzilygeroudis K, Rama R, Kaushik R, Goepp D, Vassiliades V, Mouret JB.  (2017) Black-Box 
Data-efficient Policy Search for Robotics. Proc. of IEEE IROS.

xt+1 = xt +M(xt,ut,φM
) + f(xt,ut,φK

) +w

Our objective is to find a deterministic policy ,
Simulator / model

Gaussian processes

parameters

➟ effects that can be captured by the simulator will be included by tuning 
the simulator (model identification)

➟ effects that cannot be captured by changing the parameters are 
modelled by the Gaussian processes

Learning = maximize the likelihood of M+f



Chatzilygeroudis K, Rama R, Kaushik R, Goepp D, Vassiliades V, Mouret JB.  (2017) Black-Box 
Data-efficient Policy Search for Robotics. Proc. of IEEE IROS.

The Black-DROPS algorithm

1. Perform a few random trials
➠ new data

2. Learn a probabilistic model of the robot with Gaussian processes:
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3. Optimize with CMA-ES a policy that maximizes the long-term reward 
according to the model 

➟ one function evaluation = one rollout (propagate by sampling)

➟ treat each rollout as a measurement of a noisy function 
4. Evaluate the policy on the robot

➟ new data

Most expensive step: 
• benefit a lot from parallelization
• handle uncertainty as noise ➟ domain randomization 

Black-box Data-Efficient Robot Policy Search

Model-based

policy search

xt+1 = xt +M(xt,ut,φM
) + f(xt,ut,φK

) +w

Our objective is to find a deterministic policy ,

simulator Gaussian processes



Black-DROPS + priors + identification
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Chatzilygeroudis K, Mouret JB.  (2018) Using Parameterized Black-Box Priors to Scale Up 
Model-Based Policy Search for Robotics. Proc. of ICRA.

xt+1 = xt +M(xt,ut,φM
) + f(xt,ut,φK

) +w

Our objective is to find a deterministic policy ,
Simulator / model Other dynamicsnext state

probabilistic model

policy

Model-based

policy search



Conclusions
• Adapting to damage is a reality gap problem 
… and adaptation is critical for robotics
… we know how to design controllers, but not how to adapt

• Diversity + Adaptation (IT&E): fast algorithm on the robot, but 
limited by the simulator

• Model-based Policy Search with prior and uncertainty (Black-
DROPS): slow algorithm but could learn “anything”
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reality gap



Conclusions (2)
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• Simulators are often right (for rigid bodies)! 
• Simulators are good *priors* 

• Every simulator (model) prediction should come with a measure of 
transferability or uncertainty

• this can be learned from data
• crowd-source a model for bullet/dart/ode? 

• We should map the reality gap

Mouret, J. B., Koos, S., & Doncieux, S. (2013). 
Crossing the reality gap: a short introduction to the 
transferability approach. arXiv preprint arXiv:
1307.1870.
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model-based policy search Bayesian optimization
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Micro-data policy search

J(θ) = E

"

T
X

t=1

r(xt)
∣

∣

∣
θ

#

Parameters of the policy

Reward for state xtObjective

Optimize:

In nature: evolution & experience

K. Chatzilygeroudis, V. Vassiliades, F. Stulp, S. Calinon, J.-B. Mouret. (2018). A survey on policy search 

algorithms for learning robot controllers in a handful of trials. arXiv:1807.02303
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Mouret, J. B., Koos, S., & Doncieux, S. (2013). Crossing the reality gap: a short introduction to 

the transferability approach. arXiv preprint arXiv:1307.1870.



Chatzilygeroudis K, Rama R, Kaushik R, Goepp D, Vassiliades V, Mouret JB.  (2017) Black-Box Data-efficient Policy 

Search for Robotics. Proc. of IEEE IROS.

Deisenroth, M. P., Fox, D., & Rasmussen, C. E. (2015). Gaussian processes for data-efficient learning in robotics 

and control. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(2), 408-423. !29

Strategy 1: Learning the dynamical model

xt+1 = xt + f(xt,ut) +w

stat dynamic noisnext 
Probabilistic

model

Optimal 

policy (in

the model)



Scaling up model-based RL with priors

We cannot learn a model of a 6-legged robot
➟ the state space is too large

We can add the simulator as a prior
➟ we learn a marginal model (residual)
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We can combine model learning and model identification
➟ effects that can be captured by the simulator will be included by tuning 

the simulator (model identification)
➟ effects that cannot be captured by changing the parameters are 

modelled by the Gaussian processes

xt+1 = xt +M(xt,ut,φM
) + f(xt,ut,φK

) +w

Our objective is to find a deterministic policy ,
Simulator / model

Gaussian processes

parameters

Chatzilygeroudis K, Mouret JB.  (2018) Using Parameterized Black-Box Priors to Scale Up 
Model-Based Policy Search for Robotics. Proc. of ICRA.

Learning = maximize the likelihood of M+f

Model-based

policy search



Black-DROPS + priors + identification
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Chatzilygeroudis K, Mouret JB.  (2018) Using Parameterized Black-Box Priors to Scale Up 
Model-Based Policy Search for Robotics. Proc. of ICRA.

Model-based

policy search



Physical 6-legged robot
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A. Reality gap B. Rear-leg removal

Chatzilygeroudis K, Mouret JB.  (2018) Using Parameterized Black-Box Priors to Scale Up 
Model-Based Policy Search for Robotics. Proc. of ICRA.



Conclusions — Micro-Data learning

• We all want robots that can learn. But why? Is it really needed?


➟Learning in robotics is most useful for online adaptation


➟Damage recovery: the “killer app” for robot learning?


… but robots need to learn in a few minutes (micro-data) 
➟ priors: generic for robotics? automatic generation?

➟ probabilistic models: policies robust to inaccuracies 
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« Big-Data » 

Amount of 
data « Micro-data » 

Simulated 

world

Real 

world
1-20 trials

A few minutes



… diagnosis is hard 

… robustness is hard

➡ need to anticipate possible failures

!34

Could trial-and-error learning offer an alternative?

➡ no need to understand the damage to find a compensatory behaviour
➡ “takes a shortcut” 

Where could “AI”  could make a difference in 

robotics?



biblio

subtitle
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Policy Search for damage recovery & adaptation
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model-based policy search Bayesian optimization
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Model of the intact robot



But they can agree (sometimes)!
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BO + MAP-Elites 
 “Intelligent Trial and Error” 
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Cully, A. and Clune, J. and Tarapore, D. and Mouret, J.-B. (2015). Robots that can adapt like animals. Nature. 
Vol 521 Pages 503-507.



Pautrat, R., Chatzilygeroudis, K., & Mouret, J. B. (2017). Bayesian Optimization with Automatic Prior 

Selection for Data-Efficient Direct Policy Search. arXiv preprint arXiv:1709.06919.

Automatic selection of priors

• Goal: relax the need to have “the right prior” 


• Concept:


• Generate / create many priors (e.g. 100)


• The likelihood of a prior can be computed (prior + obs.)


• Choose after each episode


• prior that is likely given the optimization


• prior that can help the optimization

➠ trade-off


• New acquisition function: Most likely Expected Improvement
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EIP(x,P) = EI(x)× P (f(x1..t) | x1..t,P(x1..t))

MLEI(x,P1, · · · ,Pm) = max
p∈P1,··· ,Pm

EIP(x, p)



Damage recovery on stairs
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A B C D E F

15 priors for 4 environments (stairs) = 60

15 priors for 6 damage conditions + intact = 105

5 iterations

30 replicates

Pautrat, R., Chatzilygeroudis, K., & Mouret, J. B. (2017). Bayesian Optimization with Automatic Prior 

Selection for Data-Efficient Direct Policy Search. arXiv preprint arXiv:1709.06919.



Damage recovery
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Pautrat, R., Chatzilygeroudis, K., & Mouret, J. B. (2017). Bayesian Optimization with Automatic Prior 

Selection for Data-Efficient Direct Policy Search. arXiv preprint arXiv:1709.06919.

10 episodes / 5 replicates / 15 priors for 6 damage conditions + intact = 105

damage among

the priors

damage NOT among

the priors
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   "real" physical world          model for the controller

small feet big feet
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Chatzilygeroudis K, Rama R, Kaushik R, Goepp D, Vassiliades V, Mouret JB.  (2017) Black-Box 
Data-efficient Policy Search for Robotics. Proc. of IEEE IROS.

Model-based policy search
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The Black-DROPS algorithm / 160 parameters (neural net.)
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A. Tunable & Useful B. Tunable

C. Tunable & Misleading D. Partially Tunable


