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Model-based control already works on complex dynamical systems

Mordatch et al, IROS 2015

Williams et al, ICRA 2016

Abbeel et al, IJRR 2010

OpenAI, 2018
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https://youtu.be/jwSbzNHGflM


Model-free RL sounds great, but …

Existing results are impressive mostly because of computer vision. 
Works well in quasi-static tasks where sampling is safe/automated and
suboptimal solutions are feasible.

There are situations where control is easier than modeling,
but that alone does not make model-free RL a good idea.

Alternative to learning/optimization: design a controller manually,
then tune a small number of control parameters on the real system.

Mechanical contraptions enable safe/automated sampling,
but they limit real-world applications …

… unless reality = publishing ☺

Expert manual design + parameter tuning
can still outperform any form of learning.

https://youtu.be/iaF43Ze1oeI


Models can do more than sample data
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MuJoCo (2009-2019)

Forward dynamics:  numerical solution (convex optimization)

Inverse dynamics:  analytical solution

10-core processor
Now has analytical derivatives!

~ 10,000 active licenses



Optico (2016-2019)
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Unified environment for physics modeling, cost function specification and
model-based optimization: control, estimation, system id, mechanism design

Speed goals:  ensemble MPC in real-time
(on desktop) long trajectory optimization in seconds

model/policy/value parameter learning in minutes



Deterministic dynamics and initial states

In a deterministic system moving towards 
some goal, the initial state determines what 
other states are visited.

Different initial states may require different
control strategies.

MDP/RL:
stochastic

Control:
deterministic

Training policies with diverse initial states 
avoids overfitting and increases robustness.

Rajeswaran et al, NIPS 2017



Physically-consistent state estimation and system identification

given noisy sensor data:
- movement kinematics
- contact forces
- actuator forces

model parameters
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2 min NPG training
on 24 CPU cores

estimate jointly:
- kinematics
- forces
- model parameters
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contacts introduce strong coupling between
state estimation and system identification: 

Kolev and Todorov, Humanoids 2015
Lowrey et al, SIMPAR 2018 



Learning to act like a model

If we cannot make the model behave like the robot, make the robot behave like the model.

let the true (but hard to model) dynamics be  x’ = f(x, u)

specify reference model  x’ = r(x, v) where v is some abstract control

learn feedback transformation u = g(x, v) such that  f(x, g(x, v)) = r(x, v)

do model-based control with respect to r(x, v)

Examples:  high-gain PID control (r : identity), feedback linearization (r : linear).

Specific motivation:
we built an amazing robot that we never controlled properly,
even though it has very fast and strong actuation.



Sim-to-real transfer

Collect real data and do the best system identification possible.

Build a model-based controller (and a state estimator).

Test on the real system as early as possible. In many cases it will just work.

If it fails, options are:

make controller less aggressive (gain reduction, larger control cost, smoothness)

ensemble optimization / domain randomization / diverse initial states / min-max

adaptive control: extend system id with data collected while running controller

augment physics-based model with non-parametric models trained on residuals

learn feedback transformation making the real system behave like the reference model

There are multiple good options for sim-to-real transfer, and they are relatively easy to try.

Building the model-based controller (and estimator) in the first place is the more difficult part.


